Nectins are cell adhesion molecules that, together with the intracellular binding partner afadin, mediate adhesion and signaling at a variety of intercellular junctions. In this work we studied the distribution of nectin-1 and afadin during hippocampal synapse formation using cultured primary hippocampal neurons. Nectin-1 and afadin cluster at developing synapses between hippocampal neurons. These nectin-afadin clusters uniformly colocalize with N-cadherin-catenin pairs, suggesting that formation of developing synapses involves participation of both bimolecular systems. Nectin-1 is initially expressed at excitatory and inhibitory synapses but is progressively lost at inhibitory synapses during their maturation. Treatment of neurons with actin depolymerizing agents disrupts the synaptically localized nectin-1 and afadin cluster at an early stage and elicits nectin-1 ectodomain shedding. These data indicate that the synaptic localization of nectin-1 and l-afadin are F-actin-dependent and that the shedding of nectin-1 is a mechanism contributing to synaptic plasticity.
Our data demonstrate that mTOR signaling is significantly dysregulated in human TLE, offering new targets for pharmacological interventions. Specifically, clinically available drugs that suppress mTORC1 without compromising mTOR2 signaling, such as rapamycin and its analogs, may represent a new group of antiepileptogenic agents in TLE patients. Ann Neurol 2018;83:311-327.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.