A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. Three noise patterns with different power—50 Hz, EMG, and base line wander – were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD) and EEMD were used to compare filtering performance. Mean square error between clean and filtered ECGs was used as filtering performance indexes. Results showed that high noise reduction is the major advantage of the EEMD based filter, especially on arrhythmia ECGs.
Empirical mode decomposition (EMD) is a powerful algorithm that decomposes signals as a set of intrinsic mode function (IMF) based on the signal complexity. In this study, partial reconstruction of IMF acting as a filter was used for noise reduction in ECG. An improved algorithm, ensemble EMD (EEMD), was used for the first time to improve the noise-filtering performance, based on the mode-mixing reduction between near IMF scales. Both standard ECG templates derived from simulator and Arrhythmia ECG database were used as ECG signal, while Gaussian white noise was used as noise source. Mean square error (MSE) between the reconstructed ECG and original ECG was used as the filter performance indicator. FIR Wiener filter was also used to compare the filtering performance with EEMD. Experimental result showed that EEMD had better noise-filtering performance than EMD and FIR Wiener filter. The average MSE ratios of EEMD to EMD and FIR Wiener filter were 0.71 and 0.61, respectively. Thus, this study investigated an ECG noise-filtering procedure based on EEMD. Also, the optimal added noise power and trial number for EEMD was also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.