In the field of machine learning, cluster analysis has always been a very important technology for determining useful or implicit characteristics in the data. However, the current mainstream cluster analysis algorithms require comprehensive analysis of the overall data to obtain the best parameters in the algorithm. As a result, handling large-scale datasets would be difficult. This research proposes a distributed related clustering mechanism for Unsupervised Learning, which assumes that if adjacent data are similar, a group can be formed by relating to more data points. Therefore, when processing data, large-scale datasets can be distributed to multiple computers, and the correlation of any two datasets in each computer can be calculated simultaneously. Later, results are processed through aggregation and filtering before assembled into groups. This method would greatly reduce the pre-processing and execution time of the dataset; in practical application, it only needs to focus on how the relevance of the data is designed. In addition, the experimental results show the accuracy, applicability, and ease of use of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.