Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low-or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F 1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.
Colorectal cancer (CRC) is a high incidence cancer and major cause of cancer mortality. Though disease‐causing tumor suppressors for major syndromes are well characterized, about 10% of CRC is familial but without mutations in known tumor suppressors. We exhaustively screened 100 polyposis families for APC germline mutations and identified 13, which are APC mutation‐negative, microsatellite‐stable (MSS), and with undetectable mutation in known tumor suppressors. Whole exome sequencing in three probands uncovered two with germline frameshift NR0B2 mutations, c.293_301delTTGGGTTGGinsAC and c.227delT. Sanger Sequencing identified a third proband with NR0B2 c.157_166delCATCGCACCT frameshift mutation. All three mutations deleted the C‐terminus activation/repression domain of NR0B2, thus are loss‐of‐function mutations. Real‐time RT‐PCR performed on tumor and matched mucosa of one patient revealed that NR0B2 downstream targets, SMAD3 was derepressed while GLI1 was downregulated in the colonic mucosa compared to healthy controls. Truncated NR0B2 molecule was predicted to have weakened binding with interacting partners SMAD3, GLI1, BCL2, and RXRα, implying perturbation of TGF‐β, Hedgehog, anti‐apoptotic and nuclear hormone receptor signaling pathways. Immunostaining also revealed nuclear retention of the most severely truncated NR0B2 molecule compared to the wildtype. Microsatellite and sequencing analysis did not detect loss of wildtype allele in probands' tumors. The patient who acquired somatic KRAS mutation progressed rapidly whist the other two patients manifested with late‐onset obesity and diabetes. We propose that haploinsufficiency of NR0B2 is associated with a novel CRC syndrome with metabolic phenotypes.
KRAS is a gatekeeper gene in human colorectal tumorigenesis. KRAS is 'undruggable'; hence, efforts have been diverted to inhibit downstream RAF/MEK/ERK and PI3K/Akt signaling. Nevertheless, none of these inhibitors has progressed to clinical use despite extensive trials. We examined levels of phospho-ERK1/2(T202/Y204) and phospho-Akt1/2/3(S473) in human colorectal tumor compared to matched mucosa with semiquantitative near-infrared western blot and confocal fluorescence immunohistochemistry imaging. Surprisingly, 75.5% (25/33) of tumors had lower or equivalent phospho-ERK1/2 and 96.9% (31/32) of tumors had lower phospho-Akt1/2/3 compared to matched mucosa, irrespective of KRAS mutation status. In contrast, we discovered KRAS-dependent SOX9 upregulation in 28 of the 31 (90.3%) tumors. These observations were substantiated by analysis of the public domain transcriptomics The Cancer Genome Atlas (TCGA) and NCBI Gene Expression Omnibus (GEO) datasets and proteomics Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset. These data suggest that RAF/MEK/ERK and PI3K/ Akt signaling are unlikely to be activated in most human colorectal cancer.
Pluripotent stem cells are uniquely positioned for regenerative medicine, but their clinical potential can only be realized if their tumorigenic tendencies are decoupled from their pluripotent properties. Deploying small molecules to remove remnant undifferentiated pluripotent cells, which would otherwise transform into teratomas and teratomacarcinomas, offers several advantages over non-pharmacological methods. Dioxonapthoimidazolium YM155, a survivin suppressant, induced selective and potent cell death of undifferentiated stem cells. Herein, the structural requirements for stemotoxicity were investigated and found to be closely aligned with those essential for cytotoxicity in malignant cells. There was a critical reliance on the quinone and imidazolium moieties but a lesser dependence on ring substituents, which served mainly to fine-tune activity. Several potent analogues were identified which, like YM155, suppressed survivin and decreased SOX2 in stem cells. The decrease in SOX2 would cause an imbalance in pluripotent factors that could potentially prompt cells to differentiate and hence decrease the risk of aberrant teratoma formation. As phosphorylation of the NF-κB p50 subunit was also suppressed, the crosstalk between phospho-p50, SOX2, and survivin could implicate a causal role for NF-κB signaling in mediating the stem cell clearing properties of dioxonaphthoimidazoliums.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.