We give an effective algorithm to determine the endomorphism ring of a Drinfeld module, both over its field of definition and over a separable or algebraic closure thereof. Using previous results we deduce an effective description of the image of the adelic Galois representation associated to the Drinfeld module, up to commensurability. We also give an effective algorithm to decide whether two Drinfeld modules are isogenous, again both over their field of definition and over a separable or algebraic closure thereof.
We provide an exposition of the canonical self-duality associated to a presentation of a finite, flat, complete intersection over a Noetherian ring, following work of Scheja and Storch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.