Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)(2)D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)(2)D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)(2)D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G(0)/G(1) arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G(1)/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)(2)D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.
Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that regulates cellular stress responses. While the levels of HIF-1α protein are tightly regulated, recent studies suggest that it can be active under normoxic conditions. We hypothesized that HIF-1α is required for normal β cell function and reserve and that dysregulation may contribute to the pathogenesis of type 2 diabetes (T2D). Here we show that HIF-1α protein is present at low levels in mouse and human normoxic β cells and islets. Decreased levels of HIF-1α impaired glucosestimulated ATP generation and β cell function. C57BL/6 mice with β cell-specific Hif1a disruption (referred to herein as β-Hif1a-null mice) exhibited glucose intolerance, β cell dysfunction, and developed severe glucose intolerance on a high-fat diet. Increasing HIF-1α levels by inhibiting its degradation through iron chelation markedly improved insulin secretion and glucose tolerance in control mice fed a high-fat diet but not in β-Hif1a-null mice. Increasing HIF-1α levels markedly increased expression of ARNT and other genes in human T2D islets and improved their function. Further analysis indicated that HIF-1α was bound to the Arnt promoter in a mouse β cell line, suggesting direct regulation. Taken together, these findings suggest an important role for HIF-1α in β cell reserve and regulation of ARNT expression and demonstrate that HIF-1α is a potential therapeutic target for the β cell dysfunction of T2D. IntroductionThe transcription factor HIF-1α is important for a range of functions, including cellular responses to hypoxia and other stressors, angiogenesis, and fetal development (1-6). It has strong antiapoptotic effects (7-11) and is implicated in the pathogenesis of cardiovascular diseases and some cancers (12)(13)(14)(15)(16)(17)(18)(19)(20).HIF-1α is a member of the bHLH-PAS family (reviewed in refs. 2, 18, 21) and functions as an obligate dimer with other family members, including aryl hydrocarbon receptor (AhR) nuclear translocator (ARNT). We previously reported that ARNT was decreased in islets isolated from patients with type 2 diabetes (T2D) and that decreasing ARNT in Min6 cells or disrupting it in mouse β cells caused changes in gene expression and glucose-stimulated insulin secretion (GSIS) similar to those seen in islets isolated from humans with T2D (22). Recently, we reported a loss of ARNT expression in the livers of people with T2D, affecting dysregulation of gluconeogenesis (23). Though the specific ARNT partner which is important for its actions in β cells (or liver) is not known, candidates include AhR, HIF-1α, HIF-2α, HIF-3α, and circadian rhythm molecules, e.g., BMAL.
Rice growth under aerobic and anaerobic conditions allowed aspects of mitochondrial biogenesis to be identified as dependent on or independent of an oxygen signal. Analysis of transcripts encoding mitochondrial components found that a subset of these genes respond to oxygen (defined as aerobic), whereas others are relatively unaffected by oxygen availability. Mitochondria formed during growth in anaerobic conditions had reduced protein levels of tricarboxylic acid cycle components and cytochrome-containing complexes of the respiratory chain and repressed respiratory functionality. In general, the capacity of the general import pathway was found to be significantly lower in mitochondria isolated from tissue grown under anaerobic conditions, whereas the carrier import pathway capacity was not affected by changes in oxygen availability. Transcript levels of genes encoding components of the protein import apparatus were generally not affected by the absence of oxygen, and their protein abundance was severalfold higher in mitochondria isolated from anaerobically grown tissue. However, both transcript and protein abundances of the subunits of the mitochondrial processing peptidase, which in plants is integrated into the cytochrome bc 1 complex, were repressed under anaerobic conditions. Therefore, in this system, an increase in import capacity is correlated with an increase in the abundance of the cytochrome bc 1 complex, which is ultimately dependent on the presence of oxygen, providing a link between the respiratory chain and protein import apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.