Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system called DehazeNet, for medium transmission estimation. DehazeNet takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model. DehazeNet adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing. Specifically, the layers of Maxout units are used for feature extraction, which can generate almost all haze-relevant features. We also propose a novel nonlinear activation function in DehazeNet, called bilateral rectified linear unit, which is able to improve the quality of recovered haze-free image. We establish connections between the components of the proposed DehazeNet and those used in existing methods. Experiments on benchmark images show that DehazeNet achieves superior performance over existing methods, yet keeps efficient and easy to use.
In this paper, we propose a very simple deep learning network for image classification that is based on very basic data processing components: 1) cascaded principal component analysis (PCA); 2) binary hashing; and 3) blockwise histograms. In the proposed architecture, the PCA is employed to learn multistage filter banks. This is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus called the PCA network (PCANet) and can be extremely easily and efficiently designed and learned. For comparison and to provide a better understanding, we also introduce and study two simple variations of PCANet: 1) RandNet and 2) LDANet. They share the same topology as PCANet, but their cascaded filters are either randomly selected or learned from linear discriminant analysis. We have extensively tested these basic networks on many benchmark visual data sets for different tasks, including Labeled Faces in the Wild (LFW) for face verification; the MultiPIE, Extended Yale B, AR, Facial Recognition Technology (FERET) data sets for face recognition; and MNIST for hand-written digit recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state-of-the-art features either prefixed, highly hand-crafted, or carefully learned [by deep neural networks (DNNs)]. Even more surprisingly, the model sets new records for many classification tasks on the Extended Yale B, AR, and FERET data sets and on MNIST variations. Additional experiments on other public data sets also demonstrate the potential of PCANet to serve as a simple but highly competitive baseline for texture classification and object recognition.
Human actions in video sequences are threedimensional (3D) spatio-temporal signals characterizing both the visual appearance and motion dynamics of the involved humans and objects. Inspired by the success of convolutional neural networks (CNN) for image classification, recent attempts have been made to learn 3D CNNs for recognizing human actions in videos. However, partly due to the high complexity of training 3D convolution kernels and the need for large quantities of training videos, only limited success has been reported. This has triggered us to investigate in this paper a new deep architecture which can handle 3D signals more effectively. Specifically, we propose factorized spatio-temporal convolutional networks (F ST CN) that factorize the original 3D convolution kernel learning as a sequential process of learning 2D spatial kernels in the lower layers (called spatial convolutional layers), followed by learning 1D temporal kernels in the upper layers (called temporal convolutional layers). We introduce a novel transformation and permutation operator to make factorization in F ST CN possible. Moreover, to address the issue of sequence alignment, we propose an effective training and inference strategy based on sampling multiple video clips from a given action video sequence. We have tested F ST CN on two commonly used benchmark datasets (UCF-101 and HMDB-51). Without using auxiliary training videos to boost the performance, F ST CN outperforms existing CNN based methods and achieves comparable performance with a recent method that benefits from using auxiliary training videos.
Unsupervised domain adaptation aims to learn a model of classifier for unlabeled samples on the target domain, given training data of labeled samples on the source domain. Impressive progress is made recently by learning invariant features via domain-adversarial training of deep networks. In spite of the recent progress, domain adaptation is still limited in achieving the invariance of feature distributions at a finer category level. To this end, we propose in this paper a new domain adaptation method called Domain-Symmetric Networks (SymNets). The proposed SymNet is based on a symmetric design of source and target task classifiers, based on which we also construct an additional classifier that shares with them its layer neurons. To train the SymNet, we propose a novel adversarial learning objective whose key design is based on a two-level domain confusion scheme, where the category-level confusion loss improves over the domain-level one by driving the learning of intermediate network features to be invariant at the corresponding categories of the two domains. Both domain discrimination and domain confusion are implemented based on the constructed additional classifier. Since target samples are unlabeled, we also propose a scheme of cross-domain training to help learn the target classifier. Careful ablation studies show the efficacy of our proposed method. In particular, based on commonly used base networks, our SymNets achieve the new state of the art on three benchmark domain adaptation datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.