A novel anionic surfactant-templated synthesis of ZnO/mesoporous silica nanocomposites has been carried out by using N-hexadecylethylenediamine triacetate (HED3A), a triprotic surfactant, as the structure-directing agent. The chelating template can capture zinc ions in solution and then direct the mesophase formation, enabling an amount of zinc oxide to be embedded in the porous silica matrix during calcination. With variation of the molar ratio of Zn(2+) to HED3A in the template, a series of composites with different doping amounts were obtained after the removal of organic components. The variation of the zinc ion concentration in the initial template solution induces an evolution of the silica mesophase, presumably due to the change in electronegativity of the HED3A headgroup caused by the chelating effect. Spectroscopic studies show a strong host-guest interaction between the silica pore walls and ultrafine ZnO nanoparticles. The photoluminescence properties of the resulting composites exhibit a size-dependent light emission and quantum-confinement effect of ZnO, accompanied by an infrequent violet emission originating from the ZnO-SiO(2) interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.