The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.
We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.
Carbon-based nanomaterials have been widely used as catalysts or catalyst supports in the chemical industry or for energy or environmental applications due to their fascinating properties. High surface areas, tunable porosity, and functionalization are considered to be crucial to enhance the catalytic performance of carbon-based materials. Recently, the newly emerging metal−organic frameworks (MOFs) built from metal ions and polyfunctional organic ligands have proved to be promising self-sacrificing templates and precursors for preparing various carbon-based nanomaterials, benefiting from their high BET surface areas, abundant metal/organic species, large pore volumes, and extraordinary tunability of structures and compositions. In comparison with other carbon-based catalysts, MOF-derived carbon-based nanomaterials have great advantages in terms of tailorable morphologies and hierarchical porosity and easy functionalization with other heteroatoms and metal/metal oxides, which make them highly efficient as catalysts directly or as catalyst supports for numerous important reactions. In this perspective, we intend to give readers a survey of the research advances in the use of MOFs as self-sacrificing templates and precursors to prepare carbon-based nanomaterials, mainly including heteroatom-doped porous carbons and metal/metal oxide decorated porous carbons for applications as catalysts in energy and environment-related electrocatalysis and traditional heterogeneous catalysis. Finally, some perspectives are provided for future developments and directions of MOF-derived carbon-based materials for catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.