Viologens are showing an increasing number of scientific and technical applications in addition to their use as herbicides. However, their high toxicity poses considerable risks to human health, society, and the environment. In this context, we propose a new therapeutic protocol for the treatment of viologen poisoning. The mechanism of this new protocol is based on host-guest chemistry and involves the effective inhibition of viologen toxicity by the complexation of p-sulfonatocalix[n]arenes. NMR, ITC, and X-ray crystallography studies indicated that p-sulfonatocalix[n]arenes could form highly stable complexes with viologens. Electrochemical results showed that the highly effective binding could induce the reduction potentials of viologens to shift to more negative values. Further studies in mice showed that the ingestion of p-sulfonatocalix[n]arenes significantly decreased the mortality rate of viologen-poisoned mice with lung and liver protection. As a result, p-sulfonatocalix[n]arenes may have potential application in the clinical treatment of viologen poisoning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.