<abstract> <p>Compared with the land power grid, power capacity of ship power system is small, its power load has randomness. Ship power load forecasting is of great significance for the stability and safety of ship power system. Support vector machine (SVM) load forecasting algorithm is a common method of ship power load forecasting. In this paper, water flow velocity, wind speed and ship speed are used as the features of SVM to train the load forecasting algorithm, which strengthens the correlation between features and predicted values. At the same time, regularization parameter C and standardization parameter σ of SVM has a great influence on the prediction accuracy. Therefore, the improved particle swarm optimization algorithm is used to optimize these two parameters in real time to form a new improved particle swarm optimization support vector machine algorithm (IPSO-SVM), which reduces the load forecasting error, improves the prediction accuracy of ship power load, and improves the performance of ship energy management system.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.