A series of WC‐based cemented carbides with Nb/TiC/TaC/VC and Co was prepared through spark plasma sintering (SPS) at a low sintering temperature of 1300°C, and their microstructures and mechanical properties were investigated. The nonstoichiometric multicomponent carbide Nb/TiC/TaC/VC with a rock‐salt structure (Fmtrue3¯m$Fm\bar{3}m$) has a high atomic solution capacity. In the sintering process, partial WC and Co may dissolve in Nb/TiC/TaC/VC. With a high concentration of carbon vacancies, Nb/TiC/TaC/VC plays a beneficial role as a mass transfer intermediary. Good mass transfer facilitates the formation of a more accommodating and stable bonding between WC, Nb/TiC/TaC/VC, and Co, thereby preserving the hardness of the sintered bulks and preventing the initiation and propagation of cracks. When 6 wt.% Nb/TiC/TaC/VC and 4 wt.% Co are added to WC, the sintered bulk with fine grains exhibits superior hardness (23.27 ± .63 GPa) and toughness (10.45 ± .56 MPa·m1/2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.