One of the challenges of utilizing soft sensors is that their prediction accuracy deteriorates with time due to multiple factors, including changes in operating conditions. Once soft sensors are designed, a mechanism to maintain or update these models is highly desirable in industry. This paper proposes an index that can monitor the prediction performance of soft sensor models and provide guidance about when to update these models. In the proposed approach, a Kalman filter based model mismatch index is developed to monitor the prediction performance of soft sensors with the support of traditional process monitoring indexes, T 2 and SPE. Then, the soft sensor model can be updated through partial least squares (PLS) regression by using samples from the off-line training set and new process conditions. The proposed online update method is applied to an industrial process case study and the effectiveness of the proposed approach is demonstrated by comparing with traditional recursive partial least squares (RPLS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.