As a kind of typical high stacking fault energy materials, recrystallization behavior of high purity Al-0.5%Cu alloy is significantly influenced by the annealing process. In this study, different heating rate, target temperature, and holding time were discovered to have profound impact on the microstructures and textures of Al-0.5%Cu plates. Electron backscatter diffraction (EBSD), scanning electron microscope (SEM), and X-ray diffraction (XRD) were utilized for analyzing the evolution of the microstructure and texture in the subsequent microstructural characterization. Vickers hardness tests were employed for measuring hardness of specimens. The results showed that no obvious recrystallization was observed at lower temperature and the composition of texture influenced by rising temperature, heating rate affected initial recrystallization temperature, grain size, and strength of textures. After recrystallizing completely, the size of microstructures and the distribution of textures had little change with the extension of holding time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.