Gold nanoparticles were selectively attached to chemically functionalized surface sites on nitrogen-doped carbon (CN x ) nanotubes. A cationic polyelectrolyte was adsorbed on the surface of the nanotubes by electrostatic interaction between carboxyl groups on the chemically oxidized nanotube surface and polyelectrolyte chains. Negatively charged 10 nm gold nanoparticles from a gold colloid suspension were subsequently anchored to the surface of the nanotubes through the electrostatic interaction between the polyelectrolyte and the nanoparticles. This approach provides an efficient method to attach other nanostructures to carbon nanotubes and can be used as an illustrative detection of the functional groups on carbon nanotube surfaces.
The ability to modify the surface of carbon nanotubes is of crucial importance for their
utilization in different applications. In the present paper we report on the chemical
modification of multiwalled carbon nanotubes (MWNT) by means of epoxide-based functional
groups. MWNT were first carboxylated along their walls. This was followed by further
reactions to attach di-glycidyl ether of bisphenol-A-based epoxide resin. The behavior of the
modified nanotubes in various solvents was altered due to the chemical changes, and
analytical techniques were utilized to detect the chemical attachments. The implications of
the surface modification achieved are discussed primarily in terms of nanotube−polymer
composite applications.
Battery safety is critical for many applications including portable electronics, hybrid and electric vehicles, and grid storage. For lithium ion batteries, the conventional polymer based separator is unstable at 120 °C and above. In this research, we have developed a pure aluminum oxide nanowire based separator; this separator does not contain any polymer additives or binders; additionally, it is a bendable ceramic. The physical and electrochemical properties of the separator are investigated. The separator has a pore size of about 100 nm, and it shows excellent electrochemical properties under both room and high temperatures. At room temperature, the ceramic separator shows a higher rate capability compared to the conventional Celgard 2500 separator and life cycle performance does not show any degradation. At 120 °C, the cell with the ceramic separator showed a much better cycle performance than the conventional Celgard 2500 separator. Therefore, we believe that this research is really an exciting scientific breakthrough for ceramic separators and lithium ion batteries and could be potentially used in the next generation lithium ion batteries requiring high safety and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.