Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme.
We demonstrate large-scale (1 kb) high-density crossbar arrays using a Si-based memristive system. A two-terminal hysteretic resistive switch (memristive device) is formed at each crosspoint of the array and can be addressed with high yield and ON/OFF ratio. The crossbar array can be implemented as either a resistive random-access-memory (RRAM) or a write-once type memory depending on the device configuration. The demonstration of large-scale crossbar arrays with excellent reproducibility and reliability also facilitates further studies on hybrid nano/CMOS systems.
We show that in nanoscale two-terminal resistive switches the resistance switching can be dominated by the formation of a single conductive filament. The probabilistic filament formation process strongly affects the device operation principle, and can be programmed to facilitate new functionalities such as multibit switching with partially formed filaments. In addition, the nanoscale switches exhibit excellent performance metrics making them well suited for memory or logic operations using conventional or emerging hybrid nano/CMOS architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.