Abstract. For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO2 during photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important one. The majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO2 are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO2 without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies. More work needs to be done to generate global coverage for OCS observations and to link this powerful atmospheric tracer to systems where fundamental questions concerning the carbon and water cycle remain.
Abstract. For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO 2 during 25 photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important. The majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO 2 are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO 2 without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and 30 its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies.More work needs to be done to generate global coverage for OCS observations and to link this powerful Biogeosciences Discuss., https://doi
Recent progress of including lake subroutines in numerical weather prediction (NWP) models has led to more accurate forecasts. In lake models, one essential parameter is water clarity, parameterized via the light extinction coefficient, K d , for which a global constant value is usually used. We used direct eddy covariance fluxes and basic meteorological measurements coupled with lake water temperature and clarity measurements from a boreal lake to estimate the performance of two lake models, LAKE and FLake. These models represent two 1-D modeling frameworks broadly used in NWP. The results show that the lake models are very sensitive to changes in K d when it is lower than 0.5 m À1. The progress of thermal stratification depended strongly on K d . In dark-water simulations the mixed layer was shallower, longwave and turbulent heat losses higher, and therefore the average water column temperatures lower than in clear-water simulations. Thus, changes in water clarity can also affect the onset of ice cover. The more complex LAKE modeled the seasonal thermocline deepening, whereas it remained virtually constant during summer in the FLake model. Both models overestimated the surface water temperatures by about 1°C and latent heat flux by >30%, but the variations in heat storage and sensible heat flux were adequately simulated. Our results suggest that, at least for humic lakes, a lake-specific, but not time-depending, constant value for K d can be used and that a global mapping of K d would be most beneficial in regions with relatively clear lakes, e.g., in lakes at high altitudes.
Abstract. Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, k CC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH 4 and CO 2 fluxes from BLM with k CC and two other gas transfer velocities (k TE and k HE ), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model k TE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of k CC , for better flux estimates.BLM CO 2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO 2 flux. CH 4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH 4 and CO 2 . This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general.FC measurements did not detect spatial variation in either CH 4 or CO 2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH 4 fluxes but did show a clear difference between CO 2 fluxes from shallower and deeper areas. We highlight that while all flux measurement methods have their pros and cons, it is important to carefully think about the chosen method and measurement interval, as well as their effects on the resulting flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.