Abstrak - Salah satu keluhan yang terjadi pada usaha kafe yaitu banyaknya pelanggan yang menanyakan jenis menu disetiap transaksi, baik setiap jenis menu atau kombinasi beberapa jenis menu yang sebaiknya mereka pilih. Hal tersebut menjadikan satu transaksi harus diselesaikan dengan waktu yang lama. Jika hal tersebut terus berlanjut akan semakin banyak kesan negatif, sehingga pelanggan tidak mau kembali berkunjung. Dampak lainnya dapat mengakibatkan kerugian pihak manajemen dan menurunnya omset perusahaan. Untuk pembuatan kombinasi menu, tools yang akan digunakan pada percobaan ini adalah RapidminerStudio 9.10 dengan metode Association Rules dan algoritma FP-Growth. Data yang digunakan adalah transaksi penjualan Internet Learning Cafe selama 6 bulan terakhir, sebanyak 38.405 transaksi. Data transaksi berformat (.CSV) nantinya akan disesuaikan dengan perkembangan keadaan menu terbaru, pengurangan Items menu terendah dan lainnya. Pembentukan paket menu ditentukan berdasarkan support yaitu nilai yang menjelaskan berapa kali sebuah Itemset muncul dari sejumlah dataset dan nilai Confidence yang menampilkan seberapa sering relasi yang muncul diantara Itemset X dan Y. Untuk mendapatkan nilai tersebut data harus melalui 6 tahapan proses yaitu Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation dan Deployment. Setelah itu Rules atau Knowledge akan ditampilkan pada beberapa baris dengan nilai tertinggi.Kata Kunci: Data Mining, Association Rules, FP-Growth, Rapid Miner. Abstract - One of the complaints that occurs in the cafe business is the number of customers who ask for the type of menu in each transaction, either each type of menu or a combination of several types of menus that they should choose. This makes one transaction to be completed in a long time. If this continues, there will be more and more negative impressions, so that customers do not want to come back to visit. Other impacts can result in management losses and a decrease in company turnover. For making menu combinations, the tools that will be used in this experiment are RapidminerStudio 9.10 with Association Rules algorithm FP-Growth. The data used are Internet Learning Cafe sales transactions for the last 6 months, totaling 38,405 transactions. Transaction data in (.CSV) format will later be adjusted to the latest developments in the menu, reducing items the lowest menuThe formation of the menu package is determined based on support , which is a value that explains how many times an Itemset appears from a number of datasets and a Confidence that displays how often a relationship appears between Itemset X and Y. To get this value the data must go through 6 stages of the process, namely Business Understanding, Data Understanding , Data Preparation, Modeling, Evaluation and Deployment. After that Rules or Knowledge will be displayed on several lines with the highest value. Keywords: Data Mining, Association Rules, FP-Growth, Rapid Miner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.