Adzuki bean (Vigna angularis var. angularis) is a dietary legume crop in East Asia. The presumed progenitor (Vigna angularis var. nipponensis) is widely found in East Asia, suggesting speciation and domestication in these temperate climate regions. Here, we report a draft genome sequence of adzuki bean. The genome assembly covers 75% of the estimated genome and was mapped to 11 pseudo-chromosomes. Gene prediction revealed 26,857 high confidence protein-coding genes evidenced by RNAseq of different tissues. Comparative gene expression analysis with V. radiata showed that the tissue specificity of orthologous genes was highly conserved. Additional re-sequencing of wild adzuki bean, V. angularis var. nipponensis, and V. nepalensis, was performed to analyze the variations between cultivated and wild adzuki bean. The determined divergence time of adzuki bean and the wild species predated archaeology-based domestication time. The present genome assembly will accelerate the genomics-assisted breeding of adzuki bean.
Black gram (Vigna mungo) is an important short duration grain legume crop. Black gram seeds provide an inexpensive source of dietary protein. Here, we applied the 10X Genomics linked‐read technology to obtain a de novo whole genome assembly of V. mungo cultivated variety Chai Nat 80 (CN80). The preliminary assembly contained 12,228 contigs and had an N50 length of 5.2 Mb. Subsequent scaffolding using the long‐range Chicago and HiC techniques yielded the first high‐quality, chromosome‐level assembly of 499 Mb comprising 11 pseudomolecules. Comparative genomics analyses based on sequence information from single‐copy orthologous genes revealed that black gram and mungbean (Vigna radiata) diverged about 2.7 million years ago . The transversion rate (4DTv) analysis in V. mungo revealed no evidence supporting a recent genome‐wide duplication event observed in the tetraploid créole bean (Vigna reflexo‐pilosa). The proportion of repetitive elements in the black gram genome is slightly lower than the numbers reported for related Vigna species. The majority of long terminal repeat retrotransposons appeared to integrate into the genome within the last five million years. We also examined alternative splicing events in V. mungo using full‐length transcript sequences. While intron retention was the most prevalent mode of alternative splicing in several plant species, alternative 3' acceptor site selection represented the majority of events in black gram. Our high‐quality genome assembly along with the genomic variation information from the germplasm provides valuable resources for accelerating the development of elite varieties through marker‐assisted breeding and for future comparative genomics and phylogenetic studies in legume species.
Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.
Rice bean (Vigna umbellata) is an underexploited domesticated legume crop consumed for dietary protein in Asia, yet little is known about the genetic diversity of this species. Here, we present a high-quality reference genome for a rice bean landrace (FF25) built using PacBio long-read data and a Hi-C chromatin interaction map, and assess the phylogenetic position and speciation time of rice bean within the Vigna genus. We sequence 440 landraces (two core collections), and GWAS based on data for growth sites at three widely divergent latitudes reveal loci associated with flowering and yield. Loci harboring orthologs of FUL (FRUITFULL), FT (FLOWERING LOCUS T), and PRR3 (PSEUDO-RESPONSE REGULATOR 3) contribute to the adaptation of rice bean from its low latitude center of origin towards higher latitudes, and the landraces which pyramid early-flowering alleles for these loci display maximally short flowering times. We also demonstrate that copy-number-variation for VumCYP78A6 can regulate seed-yield traits. Intriguingly, 32 landraces collected from a mountainous region in South-Central China harbor a recently acquired InDel in TFL1 (TERMINAL FLOWER1) affecting stem determinacy; these materials also have exceptionally high values for multiple human-desired traits and could therefore substantially advance breeding efforts to improve rice bean.
Jatropha curcas (jatropha) is a multipurpose plant with potential as a raw material for biofuel. In the present study, a total of 43,349 expressed sequence tags (ESTs) from J. curcas were searched for type and frequency of simple sequence repeat (SSR) markers. Five thousand one hundred and seventy-five sequences were indentified to contain 6,108 SSRs with 90.8% simple and 9.2% compound repeat motifs. One hundred and sixty-three EST-SSRs were developed and used to evaluate the transferability and genetic relatedness among 4 accessions of J. curcas from China, Mexico, Thailand and Vietnam; 5 accessions of congeneric species, viz. J. gossypiifolia, dwarf J. integerrima, normal J. integerrima, J. multifida, J. podagrica; and Ricinus communis. The polymorphic markers showed 75.56-85.19% transferability among four species of Jatropha and 26.67% transferability across genera in Ricinus communis. Investigation of genetic relatedness showed that J. curcas and J. integerrima are closely related. EST-SSRs used in this study demonstrate a high efficiency of cross species/genera amplification and are useful for identifying genetic diversity of jatropha and its close taxa and to choose the desired related species for wide crossing to improve new varieties of jatropha. The markers can also be further exploited for genetic resource management and genetic improvement of related species/genera through marker-assisted breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.