A novel coronavirus disease (COVID-19) is transmitting throughout the globe. During this Pandemic situation, medical robots are playing an important role in protecting front line medical staff from this disease. The flexible robotic manipulator has mechanical flexibility, due to that fluctuation or oscillations can be seen either during or after the movement of a manipulator and can create uncertainty in medical operations. During this pandemic situation, reliable operations of these robots are necessary that depend upon the stability of flexible manipulators. In this article, Linear Quadratic Regulator (LQR), Pole Placement, and Proportional-Integral-Derivatives (PID) control methods have been used to investigate the robust control method for controlling the position of manipulator with flexible link in medical robots. To carry out this research, an effective variant of the flexible Link robotic manipulator has been used as a framework to analyze the robust control method. The MatlabÒ/Simulink result shows that the LQR control method provides better control response compared to PID and pole placement method and thus provides reliable operation to Medical Robots.
DC-DC converters preserve or control the output DC voltage. Due to parasitic constituents such as leakage capacitance of both diode and inductor, and transformer leakage inductance, DC-DC converters mostly operate on rigid switching conditions which result in high switching losses. These parasitic constituents affect the dc-dc converter’s operational reliability, instigate electromagnetic interference issues and limit the converter’s operation at higher frequency operations. In this paper, resonant or soft-switch approach has been employed to improve the operating performance and design-oriented principle investigations have been carried out for overcoming the issues of parasitic constituents in 24-12V DC-DC step-down (buck) converter. This paper divulges the analysis and Matlab Simulation results for 24-12V buck converter based on resonant or soft-switching approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.