Graphene, a monolayer of carbon atoms arranged in a honeycomb structure, is a unique material with outstanding properties that may be useful in applications ranging from electronic devices to energy storage devices.
Graphene and its derivatives have been the subject of extensive research in fundamental science and have viable applications in current and future technology. The exceptionally high electronic and thermal conductivity, optical transparency, and high specific surface area, combined with excellent mechanical flexibility and environmental stability leave graphene poised to be a material of the future. This perspective introduces the importance of graphene electrodes, discusses the synthesis of graphene and transfer onto desired substrates and the role of graphene in electrodes for a broad range of flexible devices such as photovoltaic, electronic, and electrochemical energy storage.
The electrodes in lithium-ion batteries (LIBs) are typically films that are arranged on metal foil current collectors with a thickness of several tens of μm. Here, we report on the preparation of a thick free-standing graphene film synthesized by CVD as an alternative to Cu foil as an anode current collector. As a model system, MoS2 anodes with a flower-like morphology were anchored onto the surface of the thick graphene film. A hybrid and binder free anode without a conventional metal current collector exhibited an excellent capacity value of around 580 mAh/g (@50 mA/g) and reasonable charge/discharge cyclability. The work presented here may stimulate the use of graphene films as replacements for conventional current collectors and additive free electrode in LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.