We present a high-performance bilayer graphene (BLG) and mercury cadmium telluride (Hg1−xCdx=0.1867Te) heterojunction based very long wavelength infrared (VLWIR) conductive photodetector.
This paper presents three self-powered photodetectors namely, p+-bilayer graphene (BLG)/n+-ZnO nanowires (NWs), p+-BLG/n+-Si NWs/p–-Si and p+-BLG/n+-ZnO NWs/p–-Si. The Silvaco Atlas TCAD software is utilized to characterize the optoelectronic properties of all the devices and is validated by analytical modeling. The proposed dual-junction photodetectors cover broadband spectral response varying from ultraviolet to near-infrared wavelengths. The dual-heterojunction broadband photodetector exhibits photocurrent switching with the rise and fall time of 1.48 and 1.27 ns, respectively. At −0.5 V bias, the highest external quantum efficiency, photocurrent responsivity, specific detectivity, and the lowest noise equivalent power of 71%, 0.28 A W−1, 4.2 × 1012 cmHz1/2 W−1, and 2.59 × 10–17 W, respectively, are found for the dual-heterojunction device with a wavelength of 480 nm at 300 K. The proposed nanowires based photodetectors offer great potential to be utilized as next-generation optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.