Summary Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intra-genic, extra-genic and inter-genic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated non-coding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into the transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.
Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.
The precise splicing of genes confers an enormous transcriptional complexity to the human genome. The majority of gene splicing occurs cotranscriptionally, permitting epigenetic modifications to affect splicing outcomes. Here we show that select exonic regions are demarcated within the three-dimensional structure of the human genome. We identify a subset of exons that exhibit DNase I hypersensitivity and are accompanied by ‘phantom’ signals in chromatin immunoprecipitation and sequencing (ChIP-seq) that result from cross-linking with proximal promoter- or enhancer-bound factors. The capture of structural features by ChIP-seq is confirmed by chromatin interaction analysis that resolves local intragenic loops that fold exons close to cognate promoters while excluding intervening intronic sequences. These interactions of exons with promoters and enhancers are enriched for alternative splicing events, an effect reflected in cell type-specific periexonic DNase I hypersensitivity patterns. Collectively, our results connect local genome topography, chromatin structure and cis-regulatory landscapes with the generation of human transcriptional complexity by cotranscriptional splicing.
Recent observations highlight that the mammalian genome extensively communicates with itself via longrange chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted. Moreover, CTCF-binding sites within the H19 imprinting control region (ICR) not only determine the physical proximity among imprinted domains, but also transvect allele-specific epigenetic states, identified by replication timing patterns, to interacting, nonallelic imprinted regions during germline development. We conclude that one locus can directly or indirectly pleiotropically influence epigenetic states of multiple regions on other chromosomes with which it interacts.Supplemental material is available at http://www.genesdev.org.
SUMMARY Chromatin interactions play important roles in transcription regulation. To better understand the underlying evolutionary and functional constraints of these interactions, we implemented a systems approach to examine RNA polymerase-II-associated chromatin interactions in human cells. We found that 40% of the total genomic elements involved in chromatin interactions converged to a giant, scale-free-like, hierarchical network organized into chromatin communities. The communities were enriched in specific functions and were syntenic through evolution. Disease-associated SNPs from genome-wide association studies were enriched among the nodes with fewer interactions, implying their selection against deleterious interactions by limiting the total number of interactions, a model that we further reconciled using somatic and germline cancer mutation data. The hubs lacked disease-associated SNPs, constituted a nonrandomly interconnected core of key cellular functions, and exhibited lethality in mouse mutants, supporting an evolutionary selection that favored the nonrandom spatial clustering of the least-evolving key genomic domains against random genetic or transcriptional errors in the genome. Altogether, our analyses reveal a systems-level evolutionary framework that shapes functionally compartmentalized and error-tolerant transcriptional regulation of human genome in three dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.