Human use of marine and coastal areas is increasing worldwide, resulting in conflicts between different interests for marine space, overexploitation of marine resources, and environmental degradation. In this study we developed a methodology that combines assessments of marine environmental vulnerability and cumulative human pressures to support the processes of ecosystem-based adaptive maritime spatial planning. The methodology is built on the spatially explicit marine environmental vulnerability profile (EVP) that is an aggregated product of the distribution of essential nature values (habitat-forming benthic macroalgal and invertebrate species, benthic species richness, birds and seals as top marine predators) and their sensitivities to disturbances. The marine environmental cumulative risk profile (ERP) combines the EVP and the HELCOM Baltic Sea Pressure Index (BSPI), the latter representing the spatial distribution of intensities of cumulative anthropogenic pressures. The ERP identifies areas where environmental risks are the highest due to both long recoveries of the biota and high intensities of human pressures. This methodology can be used in any other sea areas by modifying the list of nature values, their sensitivity to disturbances, and the intensities of human pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.