Samples collected for PCR from recipient animals tested positive in 5 out of 6 cases, while the virus was isolated from 4 of 6 animals. The clinical signs exhibited by recipient animals were mostly moderate in nature with only one severe case. To our knowledge, this is the first time that transmission of LSDV by three Stomoxys species has been demonstrated, and their role as mechanical vectors of LSDV is indicated.
Background A new inactivated whole-virion QazCovid-in® vaccine against COVID-19 was developed from SARS-CoV-2 isolated in Kazakhstan, inactivated by formaldehyde, and adjuvanted with aluminium hydroxide. Phase 1 and 2 clinical trials aimed at assessing the vaccine's safety, immunogenicity, and the duration of immunity induced by the QazCovid-in® vaccine after one or two immunisations. Methods From 23.09.2020 to 19.03.2021 we performed a randomised, single-blind, placebo-controlled phase 1 clinical trial and from 18.10.2020 to 17.04.2021 an open-label phase 2 clinical trials of the QazCovid-in® vaccine with a 6 months follow-up at a single centre in Almaty, the Republic of Kazakhstan. Eligible healthy adults aged 18 years and older with no history of laboratory-confirmed SARS-CoV-2 infection were randomly assigned to the treatment groups using a computerised randomisation scheme generator. In the phase 1 clinical trial, two doses of the vaccine (5 μg each) or placebo (0·9% NaCl) were administered intramuscularly to 44 subjects aged 18–50 years, 21 days apart. In the phase 2 trial, 200 healthy participants were randomised into four equal-sized groups according to the age (18–49 or ≥50 years) and either single (day 1) or double (day 1 and 21) vaccination protocol. The primary outcomes were safety and tolerability. The secondary outcome was immunogenicity. The cellular response was measured by a whole-blood cytokine release assay (phase 1 only). The trials were registered with ClinicalTrials.gov NCT04530357. Findings The QazCovid-in® vaccine was safe and well-tolerated and induced predominantly mild adverse events; no serious or severe adverse events were recorded in both trials. In the phase 1 trial, the percentage of subjects with a fourfold increase of antibody titres (sero conversion) in MNA was 59% after one vaccine dose and amounted to 100% after two doses. Neutralizing antibody titres reached the geometric mean titre (GMT) of 100 after administration of two doses. A statistically significant increase in the levels of pro-inflammatory cytokines after vaccination indicated the Th1-biased response. On day 180, 40% of placebo-treated subjects demonstrated a statistically significant increase in the levels of antibodies measured by both ELISA and MNA, which suggests the infection with SARS-CoV-2. In the phase 2 trial, 100% of subjects aged 18–49 years seroconverted for SARS-CoV-2 on day 21 after the first dose, as indicated by MNA yielding the GMTs of 32 or 30 in the one- and two-dose groups, respectively. Amongst ≥50-year-old subjects, the number of sero conversions in the two- and one-dose groups on day 21 was 94% and 92% with the respective GMTs of 25 and 24. After the second dose, the sero conversion rate reached 100%; however, the GMT was significantly lower when compared with the corresponding value measured in subjects aged 18–49 years (83 vs 143). In both trials, specific antibodies were detected in MNA and ELISA on study day 180, ...
BackgroundThis study provides biochemical and molecular genetic characteristics of P. multocida isolated from dead saigas in 1988, 2010–2015 on the territory of the Republic of Kazakhstan.ResultsBacteriological samples taken from carcasses of saiga antelope during mortality events recorded in West Kazakhstan in both 2010 and 2011 and in Kostanay in 2012 and 2015 confirmed the presence of P. multocida, according to morphological and biochemical characterisation. Only in the event of 2015 was the agent proven to be the causative agent of the disease observed, haemorrhagic septicaemia. In the other mortality events it is not certain if the organism was a primary aetiology or an incidental finding as confirmatory pathological investigation was not undertaken. The implemented phylogenetic analysis of ribosomal RNA 16S gene allowed us to identify Pasteurella strains isolated in 2010–2015 as P. multocida subspecies multocida. Capsular typing by PCR showed that the studied strains isolated from dead saiga in 2010, 2011, 2012 and 2015 belonged to serotype B. MLST analysis showed that these strains of P. multocida are of the capsule type B and form one clonal grouping with isolates ST64, ST44, ST45, ST46, ST44, ST47 which isolated from cases of hemorrhagic septicemia of animals in Hungary, Burma, Sri Lanka, Pakistan and Spain. Sixteen virulence genes of the five strains of P. multocida, isolated from saigas were studied using multiplex PCR. ptfA, ompA, ompH, oma87, plpB, fimA, hsf-2, pfhA, exbB, tonB, hgbA, fur, nanB, nanH and pmHAS genes were detected in all strains. The toxA gene was not identified in the studied strains. The phylogenies of these isolates is compared across saiga populations and years and the 2015 isolate was compared to that of an isolate from a disease outbreak in 1988 and the findings suggest that these isolated bacteria are stable commensals, opportunistically pathogenic, being phylogenetically uniform with very little genetic variation notable over the last 4 decades.ConclusionIsolation, phenotypic and genetic characterization of the P. multocida isolates inform understanding of the epidemiology of infection in saigas and predict virulent potential of these opportunistic bacteria.
This study describes the registration of the first cases of lumpy skin disease in July 2016 in the Republic of Kazakhstan. In the rural district of Makash, Kurmangazinsky district of Atyrau region, 459 cattle fell ill and 34 died (morbidity 12.9% and mortality 0.96%). To determine the cause of the disease, samples were taken from sick and dead animals, as well as from insects and ticks. LSDV DNA was detected by PCR in all samples from dead animals and ticks (Dermacentor marginatus and Hyalomma asiaticum), in 14.29% of samples from horseflies (Tabanus bromius), and in one of the samples from two Stomoxys calcitrans flies. The reproductive LSD virus was isolated from organs of dead cattle and insects in the culture of LT and MDBK cells. The virus accumulated in cell cultures of LT and MDBK at the level of the third passage with titers in the range of 5.5–5.75 log 10 TCID50/cm3. Sequencing of the GPCR gene allowed us to identify this virus as a lumpy skin disease virus.
Peste des petits ruminant (PPR) is endemic in many Asian countries with expansion of the range in recent years including across China during 2013-2014 (OIE, 2014). Till the end of 2014, no cases of PPR virus (PPRV) were officially reported to the Office Internationale des Epizooties (OIE) from Kazakhstan. This study describes for the first time clinicopathological, epidemiological and genetic characterization of PPRV in 3 farm level outbreaks reported for the first time in Zhambyl region (oblast), southern Kazakhstan. Phylogenetic analysis based on partial N gene sequence data confirms the lineage IV PPRV circulation, similar to the virus that recently circulated in China. The isolated viruses are 99.5-99.7% identical to the PPRV isolated in 2014 from Heilongjiang Province in China and therefore providing evidence of transboundary spread of PPRV. There is a risk of further maintenance of virus in young stock despite vaccination of adult sheep and goats, along livestock trade and pastoral routes, threatening both small livestock and endangered susceptible wildlife populations throughout Kazakhstan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.