This study was conducted to survey the epidemiological characteristics and the isolated strains for pathogenic E. coli which was the major causative organisms for food poisoning occurred at school food services in the Gyeonggi-do area during the past three years. We investigated 19 accidents of food-borne disease outbreaks by pathogenic E. coli at school food services from 2010 to 2012. Food-borne disease outbreaks by pathogenic E. coli were usually occurred at direct management type (18 accidents, 95%) and high schools. For the seasonal factors, 13 accidents (65%) were occurred in June to September, especially the end of August and September after the summer holidays. The first patients were occurred on Wednesday (7 accidents, 37%) and Thursday (7 accidents, 37%), and they were mainly reported on Thursday (7 accidents, 37%) and Friday (5 accidents, 26%). The exposure of risk was estimated in Monday (4 accidents, 21%), Tuesday (7 accidents, 37%) and Wednesday (4 accidents, 21%), and kimchi (5 accidents, 50%) was estimated as the food of the high risk responsible for the outbreaks. 98 isolates of pathogenic E. coli consisted of PEC (50%), ETEC (34%), EAEC (15%), and EHEC (1%). The antibiotic resistance of pathogenic E. coli showed in the descending order of ampicilline (40%), nalidixic acid (37%), trimethoprim/sulfamethoxazole (24%), and tetracycline (19%). The antibiotics of second and third generation cephalosporins, cabarpenem, aminoglycosides, and second generation quinolones had antimicrobial susceptibilities and cefalotin, ampicillin/sulbactam and chloramphenicol showed medium resistance at 29%, 25%, and 6% respectively, and 70% of isolates were resistant to more than one antibiotic. By the PFGE analysis, they were classified into nine major groups and 31 profiles with 57% pattern similarity. It was very difficult to find the correlation of antimicrobial susceptibilities and genotype in the small scale-food poisoning, but the similarity of antimicrobial resistance and PFGE patterns in the large scale-food poisoning enabled the outbreaks to estimate the same pathotype of E. coli derived from identical origins.