rnA-protein complexes play pivotal roles in many central biological processes. Although methods based on highthroughput sequencing have advanced our ability to identify the specific rnAs bound by a particular protein, there is a need for precise and systematic ways to identify rnA interaction sites on proteins. We have developed an experimental and computational workflow combining photo-induced crosslinking, high-resolution mass spectrometry and automated analysis of the resulting mass spectra for the identification of cross-linked peptides, cross-linking sites and the cross-linked rnA oligonucleotide moieties of such rnA-binding proteins. the workflow can be applied to any rnA-protein complex of interest or to whole proteomes. We applied the approach to human and yeast mrnA-protein complexes in vitro and in vivo, demonstrating its powerful utility by identifying 257 cross-linking sites on 124 distinct rnA-binding proteins. the open-source software pipeline developed for this purpose, rnP xl , is available as part of the openms project.RNA molecules bind to proteins to form ribonucleoprotein complexes (RNPs). These are indispensable for the synthesis, stability, transport and activity of mRNAs 1 and noncoding RNAs 2,3 . RNA-binding proteins (RBPs) assume numerous functions in RNPs. RBPs can modulate or stabilize RNA structures, thereby making RNA catalytically active, for example, during pre-mRNA splicing 4 . RNA can also guide a catalytically active RBP to its destination; examples of this are microRNA-or long noncoding RNA-mediated translational control and epigenetic modulation 5,6 . RBPs are also involved in splicing and can recruit or repel other proteins, induce hydrolysis of RNA or protect RNA from degradation.
Identifying pairwise RNA-RNA interactions is key to understanding how RNAs fold and interact with other RNAs inside the cell. We present a high-throughput approach, sequencing of psoralen crosslinked, ligated, and selected hybrids (SPLASH), that maps pairwise RNA interactions in vivo with high sensitivity and specificity, genome-wide. Applying SPLASH to human and yeast transcriptomes revealed the diversity and dynamics of thousands of long-range intra- and intermolecular RNA-RNA interactions. Our analysis highlighted key structural features of RNA classes, including the modular organization of mRNAs, its impact on translation and decay, and the enrichment of long-range interactions in noncoding RNAs. Additionally, intermolecular mRNA interactions were organized into network clusters and were remodeled during cellular differentiation. We also identified hundreds of known and new snoRNA-rRNA binding sites, expanding our knowledge of rRNA biogenesis. These results highlight the underexplored complexity of RNA interactomes and pave the way to better understanding how RNA organization impacts biology.
Prp8 protein is a highly conserved pre-mRNA splicing factor and a component of spliceosomal U5 snRNPs. Intriguingly, although it is ubiquitously expressed, mutations in the C-terminus of human Prp8p cause the retina-specific disease Retinitis pigmentosa (RP). The biogenesis of U5 snRNPs is poorly characterized. We present evidence for a cytoplasmic precursor U5 snRNP in yeast that lacks a mature U5 snRNP component, Brr2p, and depends on a nuclear localization signal in Prp8p for its efficient nuclear import. The association of Brr2p with the U5 snRNP occurs within the nucleus. RP mutations in Prp8p in yeast result in nuclear accumulation of the precursor U5 snRNP, apparently as a consequence of disrupting the interaction of Prp8p with Brr2p. We therefore propose a novel assembly pathway for U5 snRNP complexes, which is disrupted by mutations that cause human RP.Nuclear pre-mRNA splicing is an essential housekeeping process in all eukaryotic cells. It is catalyzed by a large ribonucleoprotein (RNP) complex called the spliceosome, which contains the small nuclear RNPs (snRNPs) U1, U2, U4, U5 and U6, as well as many nonsnRNP proteins1, 2. Each snRNP consists of an snRNA, a set of specific proteins, and seven common Sm proteins or, in the case of U6 snRNP, seven Lsm proteins.Unexpectedly, mutations in four human snRNP-associated proteins, PRPF83, PRPF314, PRPF35 and PAP-1/RP96, 7 were found in patients with a dominantly inherited form of retinal degeneration, Retinitis pigmentosa (RP). Here, we investigate the role of Prp8p (the yeast ortholog of PRPF8) in U5 snRNP biogenesis in Saccharomyces cerevisiae, and the effect of RP mutations on this process.Biogenesis of the U snRNPs has been studied extensively in metazoans1, 8. The U1, U2, U4 and U5 snRNAs are produced as precursors in the nucleus by RNA polymerase II then exported to the cytoplasm, facilitated by nuclear cap-binding proteins and the export factors, CRM1 and PHAX8. In the cytoplasm seven Sm proteins bind to the snRNAs, facilitated by the SMN complex9, 10, and the m 7 G cap is hypermethylated to form a 2,2,7-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.