Renewable energy sources are preferred for many power generation applications. Energy from the wind is one of the fastest-expanding kinds of sustainable energy, and it is essential in preventing potential energy issues in the foreseeable future. One pertinent issue is the many geometrical alterations that the scientific community has suggested to enhance rotor performance features. Hence, to address the challenge of developing a model that resolves these problems, the purpose of this investigation was to determine how well a scaled-down version of a Savonius turbine performed in terms of power output using a wind tunnel. Subsequently, the effect of the blockage ratio produced in the wind tunnel during the chamber test on the scaled model was evaluated. This study discusses the influences of various modified configurations on the turbine blades’ torque and power coefficients (Cp) at various tip speed ratios (TSRs) using three-dimensional (3D) unsteady computational fluid dynamics. The findings showed that the scaled model successfully achieved tunnel blockage corrections, and the experimental results obtained can be used in order to estimate how the same turbine would perform in real conditions. Furthermore, numerically, the new models achieved improvements in Cp of 19.5%, 16.8%, and 12.2%, respectively, for the flow-guiding channel (FGC at Ⴔ = 30°), wavy area at tip and end (WTE), and wavy area on the convex blade (WCB) models in comparison to the benchmark S-ORM model and under identical wind speed conditions. This investigation can provide guidance for improvements of the aerodynamic characteristics of Savonius wind turbines.
Small-scale vertical-axis wind power generation technologies such as Savonius wind turbines are gaining popularity in suburban and urban settings. Although vertical-axis wind turbines (VAWTs) may not be as efficient as their horizontal-axis counterparts, they often present better opportunities for integration within building structures. The main issue stems from the suboptimal aerodynamic design of Savonius turbine blades, resulting in lower efficiency and power output. To address this, modern turbine designs focus on optimizing various geometric aspects of the turbine to improve aerodynamic performance, efficiency, and overall effectiveness. This study developed a unique optimization method, incorporating a new blade geometry with guide gap flow for Savonius wind turbine blade design. The aerodynamic characteristics of the Savonius wind turbine blade were extensively analyzed using 3D ANSYS CFX software. The optimization process emphasized the power coefficient as the objective function while considering blade profiles, overlap ratio, and blade number as crucial design parameters. This objective was accomplished using the design of experiments (DOE) method with the Minitab statistical software. The research findings revealed that the novel turbine design “OR0.109BS2BN2” outperformed the reference turbine with a 22.8% higher power coefficient. Furthermore, the results indicated a trade-off between the flow (swirling flow) through the gap guide flow and the impact blockage ratio, which resulted from the reduced channel width caused by the extended blade tip length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.