Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.
Two-dimensional (2D) materials have been a central focus of recent research because they host a variety of properties, making them attractive both for fundamental science and for applications. It is thus crucial to be able to identify accurately and efficiently if bulk three-dimensional (3D) materials are formed by layers held together by a weak binding energy that, thus, can be potentially exfoliated into 2D materials. In this work, we develop a machine-learning (ML) approach that, combined with a fast preliminary geometrical screening, is able to efficiently identify potentially exfoliable materials. Starting from a combination of descriptors for crystal structures, we work out a subset of them that are crucial for accurate predictions. Our final ML model, based on a random forest classifier, has a very high recall of 98%. Using a SHapely Additive exPlanations (SHAP) analysis, we also provide an intuitive explanation of the five most important variables of the model. Finally, we compare the performance of our best ML model with a deep neural network architecture using the same descriptors. To make our algorithms and models easily accessible, we publish an online tool on the Materials Cloud portal that only requires a bulk 3D crystal structure as input. Our tool thus provides a practical yet straightforward approach to assess whether any 3D compound can be exfoliated into 2D layers.
materials have been a central focus of recent research because they host a variety of properties, making them attractive both for fundamental science and for applications. It is thus crucial to be able to identify accurately and efficiently if bulk three-dimensional (3D) materials are formed by layers held together by a weak binding energy that, thus, can be potentially exfoliated into 2D materials. In this work, we develop a machine-learning (ML) approach that, combined with a fast preliminary geometrical screening, is able to efficiently identify potentially exfoliable materials. Starting from a combination of descriptors for crystal structures, we work out a subset of them that are crucial for accurate predictions. Our final ML model, based on a random forest classifier, has a very high recall of 98%. Using a SHapely Additive exPlanations (SHAP) analysis, we also provide an intuitive explanation of the five most important variables of the model. Finally, we compare the performance of our best ML model with a deep neural network architecture using the same descriptors. To make our algorithms and models easily accessible, we publish an online tool on the Materials Cloud portal that only requires a bulk 3D crystal structure as input. Our tool thus provides a practical yet straightforward approach to assess whether any 3D compound can be exfoliated into 2D layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.