There is intense interest in how bacteria interact with mucin glycoproteins in order to colonise mucosal surfaces. In this study, we have assessed the feasibility of using recombinant mucin glycoproteins to study the interaction of the gastric pathogen Helicobacter pylori with MUC5AC, a mucin which the organism exhibits a distinct tropism for. Stable clonal populations of cells expressing a construct encoding for a truncated version of MUC5AC containing N- and C-termini interspersed with two native tandem repeat sequences (N + 2TR + C) were generated. Binding of H. pylori to protein immunoprecipitated from cell lysates and supernatants was assessed. High molecular weight mucin could be detected in both cell lysates and supernatants of transfected cells. Recombinant protein formed high molecular weight oligomers, was both N and O glycosylated, underwent cleavage similar to native MUC5AC and was secreted from the cell. H. pylori bound better to secreted mucin than intracellular mucin suggesting that modifications on extracellular MUC5AC promoted binding. Lectin analysis demonstrated that secreted mucin was differentially glycosylated compared to intracellular mucin. H. pylori also bound to a recombinant C-terminus MUC5AC protein, but binding to this protein did not inhibit binding to the N + 2TR + C protein. This study demonstrates the feasibility of using recombinant mucins containing tandem repeat sequences to assess microbial mucin interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.