This paper proposes an artificial neural network (ANN) based maximum power point tracking (MPPT) control strategy for wind energy conversion system (WECS) implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN) based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O) method and Back propagation network (BPN) method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC). The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.