The Indian subcontinent comprises geological terranes of varied age and structural character. In this study, we provide new constraints to existing crustal models by inverting the P‐to‐s receiver functions (RFs) at 317 broadband seismic stations. Inversion results fill crucial gaps in existing velocity models (CRUST1.0 and SEAPS) by capturing regions which are less represented. The final model produced is much more heterogeneous and is able to capture the structural variations between closely spaced seismic stations. In comparison to the global models, major differences are seen for seismic stations located over various rift zones (e.g., Godavari, Narmada, and Cambay) and those close to the coastal regions where transition from oceanic to continental crust is expected to create drastic changes in the crustal configuration. Seismic images are produced along various profiles using 49,682 individual RFs recorded at 442 seismic stations. Lateral variations captured using migrated images across the Himalayan collisional front revealed the hitherto elusive southern extent of the Moho and intracrustal features south of the Main Central Thrust (MCT). Poisson's ratio and crustal thickness estimates obtained using H‐k stacking technique and inversion of RFs are grossly similar lending credence to the robustness of inversions. An updated crustal thickness map produced using 1,525 individual data points from controlled source seismics and RFs reveals a (a) thickened crust (>55 km) at the boundary of Dharwar Craton and Southern Granulite Terrain, (b) clear difference in crustal thickness estimates between Eastern Dharwar Craton and Western Dharwar Craton, (c) thinner crust beneath Cambay Basin between southwest Deccan Volcanic Province and Delhi‐Aravalli Fold Belt, (d) thinner crust (<35 km) beneath Bengal Basin, (e) thicker crust (>40 km) beneath paleorift zones like Narmada Son Lineament and Godavari Graben, and (f) very thick crust beneath central Tibet (>65 km) with maximum lateral variations along the Himalayan collision front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.