The MAGE-A, MAGE-B, and MAGE-C protein families comprise the class-I MAGE/cancer testes antigens, a group of highly homologous proteins whose expression is suppressed in all normal tissues except developing sperm. Aberrant expression of class I MAGE proteins occurs in melanomas and many other malignancies, and MAGE proteins have long been recognized as tumor-specific targets; however, their functions have largely been unknown. Here, we show that suppression of class I MAGE proteins induces apoptosis in the Hs-294T, A375, and S91 MAGE-positive melanoma cell lines and that members of all three families of MAGE class I proteins form complexes with KAP1, a scaffolding protein that is known as a corepressor of p53 expression and function. In addition to inducing apoptosis, MAGE suppression decreases KAP1 complexing with p53, increases immunoreactive and acetylated p53, and activates a p53 responsive reporter gene. Suppression of class I MAGE proteins also induces apoptosis in MAGE-Apositive, p53wt/wt parental HCT 116 colon cancer cells but not in a MAGE-A-positive HCT 116 p53 À/À variant, indicating that MAGE suppression of apoptosis requires p53. Finally, treatment with MAGE-specific small interfering RNA suppresses S91 melanoma growth in vivo, in syngenic DBA2 mice. Thus, class I MAGE protein expression may suppress apoptosis by suppressing p53 and may actively contribute to the development of malignancies and by promoting tumor survival. Because the expression of class I MAGE proteins is limited in normal tissues, inhibition of MAGE antigen expression or function represents a novel and specific treatment for melanoma and diverse malignancies. [Cancer Res 2007;67(20):9954-62]
We previously showed that the calcium-binding protein S100A4 is overexpressed during the progression of prostate cancer (CaP) in humans and in the TRAMP (transgenic adenocarcinoma of the mouse prostate) mouse model. We tested a hypothesis that the S100A4 gene plays a role in the invasiveness of human CaP and may be associated with its metastatic spread. We observed that siRNAmediated suppression of the S100A4 gene significantly reduced the proliferative and invasive capability of the highly invasive CaP cells PC-3. We evaluated the mechanism through which the S100A4 gene controls invasiveness of cells by using a macroarray containing 96 well characterized metastatic genes. We found that matrix metalloproteinase 9 (MMP-9) and its tissue inhibitor (TIMP-1) were highly responsive to S100A4 gene suppression. Furthermore, S100A4 suppression significantly reduced the expression and proteolytic activity of MMP-9. By employing an MMP-9-promoter reporter, we observed a significant reduction in the transcriptional activation of the MMP-9 gene in S100A4-siRNA-transfected cells. Cells overexpressing the S100A4 gene (when transfected with pcDNA3.1-S100A4 plasmid) also significantly expressed MMP-9 and TIMP-1 genes with increased proteolytic activity of MMP-9 concomitant to increased transcriptional activation of the MMP-9 gene. S100A4-siRNA-transfected cells exhibited a reduced rate of tumor growth under in vivo conditions. Our data demonstrate that the S100A4 gene controls the invasive potential of human CaP cells through regulation of MMP-9 and that this association may contribute to metastasis of CaP cells. We suggest that S100A4 could be used as a biomarker for CaP progression and a novel therapeutic or chemopreventive target for human CaP treatment. extracellular matrix ͉ metastasis ͉ biomarker A pproximately 27,350 prostate cancer (CaP)-related deaths are predicted during this year alone in the United States, and despite recent improvements in diagnostic and therapeutic techniques, the survival rate of CaP patients is poor because of the posttreatment recurrence of disease (1, 2). The lack of effective therapies for advanced CaP is related to a large extent to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis (3). Thus, the identification of new predictive biomarkers, especially those that are indicative of invasiveness of the disease, which could serve as targets for establishing effectiveness of therapeutic and chemopreventive interventions, will improve clinical management of CaP. S100A4 (also known as mts1), a calcium-binding protein associated with invasion and metastasis of cancer cells, has been reported to be frequently overexpressed in metastatic tumors, normal cells with uninhibited movement (such as macrophages), and transformed cells, and in various cancer types such as breast, ovary, thyroid, lung, esophageal squamous cell carcinoma, gastric, and colon (4-6). Studies have shown that breast cancers expressing high levels of S100A4 have a sign...
Purpose: Notch, a type 1 transmembrane protein, plays a key role in the development of many tissues and organ types. Aberrant Notch signaling, found in a wide variety of human cancers, contributes to tumor development. Because Notch1 was found to be overexpressed in prostate cancer (PCa) cells and human PCa tissue, we therefore tested our hypothesis that overexpression of Notch1 in PCa promotes tumor invasion. Experimental Design: Notch1 expression was evaluated in human PCa cells and human PCa tissues. PCa cells were transiently transfected with Notch1-specific small interfering RNAs in concentrations ranging from 30 to 120 nmol/L and subsequently evaluated for effects on invasion and expression analysis for molecules involved in invasion. Results: Small interfering RNA–mediated knockdown of Notch1 in PC3 and 22Rν1 PCa cells dramatically decreased their invasion. Focused cDNA array revealed that Notch1 knockdown resulted in significant reduction in the expression of urokinase plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) gene transcripts. These data were further verified by reverse transcription-PCR, real-time reverse transcription-PCR, and immunoblot analysis. Knockdown of Notch1 was also observed to significantly reduce the mRNA expression and protein levels of uPA and its receptor uPAR. A significant reduction in MMP9 expression in Notch1 knockdown cells suggested a role for Notch1 in augmenting MMP9 transcription. Conclusions: Our data show the involvement of Notch1 in human PCa invasion and that silencing of Notch1 inhibits invasion of human PCa cells by inhibiting the expression of MMP9 and uPA. Thus, targeting of Notch1 could be an effective therapeutic approach against PCa.
Natural and synthetic compounds that disrupt microtubule dynamics are among the most successful and widely used cancer chemotherapeutic agents. However, lack of reliable markers that predict sensitivity of cancers to these agents and development of resistance remain vexing issues. There is accumulating evidence that a family of cellular proteins that are associated with and alter the dynamics of microtubules can determine sensitivity of cancer cells to microtubuletargeting agents and play a role in tumor cell resistance to these agents. This growing family of microtubule-associated proteins (MAP) includes products of oncogenes, tumor suppressors, and apoptosis regulators, suggesting that alteration of microtubule dynamics may be one of the critical events in tumorigenesis and tumor progression. The objective of this review is to integrate the knowledge on these seemingly unrelated proteins that share a common function and examine their relevance to microtubule-targeting therapies and highlight MAPs-tubulin-drug interactions as a novel avenue for new drug discovery. Based on the available evidence, we propose that rational microtubule-targeting cancer therapeutic approaches should ideally include proteomic profiling of tumor MAPs before administration of microtubule-stabilizing/destabilizing agents preferentially in combination with agents that modulate the expression of relevant MAPs.
OBJECTIVETo evaluate the effects of the petroleum ether extract of Cissus quadrangularis on the proliferation rate of bone marrow mesenchymal stem cells, the differentiation of marrow mesenchymal stem cells into osteoblasts (osteoblastogenesis) and extracellular matrix calcification. This study also aimed to determine the additive effect of osteogenic media and Cissus quadrangularis on proliferation, differentiation and calcification.METHODSMSCs were cultured in media with or without Cissus quadrangularis for 4 weeks and were then stained for alkaline phosphatase. Extracellular matrix calcification was confirmed by Von Kossa staining. marrow mesenchymal stem cells cultures in control media and osteogenic media supplemented with Cissus quadrangularis extract (100, 200, 300 μg/mL) were also subjected to a cell proliferation assay (MTT).RESULTSTreatment with 100, 200 or 300 μg/mL petroleum ether extract of Cissus quadrangularis enhanced the differentiation of marrow mesenchymal stem cells into ALP-positive osteoblasts and increased extracellular matrix calcification. Treatment with 300 μg/mL petroleum ether extract of Cissus quadrangularis also enhanced the proliferation rate of the marrow mesenchymal stem cells. Cells grown in osteogenic media containing Cissus quadrangularis exhibited higher proliferation, differentiation and calcification rates than did control cells.CONCLUSIONThe results suggest that Cissus quadrangularis stimulates osteoblastogenesis and can be used as preventive/ alternative natural medicine for bone diseases such as osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.