Abstracf-This paper considers the problem of routing connections in a reeontigurable optical network using wavelength division multiplexing. Each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths share a common link in the network are assigned d]fferent wavelengths. We derive an upper bound on the carried traffic of connections (or equivalently, a lower bound on the blocking probability) for any routing and wavelength assignment (RWA) algorithm in such a network. The bound scales with the number of wavelengths and is achieved asymptotically (when a large number of wavelengths is available) by a fixed RWA algorithm. Although computationally intensive, our bound can be used as a metric against which the performance of different RWA algorithms can be compared for networks of moderate size. We illustrate thii by comparing the performance of a simple shortest-path RWA (SP-RWA) algorithm via simulation relative to our bound. We also derive a similar bound for optical networks using dynamic wavelength converters, which are equivalent to circuit-switched telephone networks, and compam the two cases for different examples. Finatly, we quantify the amount of wavelength reuse achievable in large networks using the SP-RWA via simulation as a function of the number of wavelengths, number of edges, and number of nodes for randomly constructed networks as well as deBruijn networks. We also quantify the difference in wavelength reuse between two different optical node architectures. The results show that it is feasible to provide several all-optical connections to each node in a large network using a limited number of wavelengths. For instance, using 32 wavelengths, it is possible to provide 10 full-duplex connections to each node in a 128-node random network with average degree 4, and 5 full-duplex connections per node in a 1000-node random network with average degree 4. The results also show that wavelength converters offer a 10-40% increase in the amount of reuse achievable for our sampling of 14 networks ranging from 16 to 1000 nodes when the number of wavelengths available is small (10 or 32).
In this paper, we describe some heuristic channel assignment algorithms for cellular systems, that we have recently developed. These algorithms have yielded optimal, or near-optimal assignments, in many cases. The channel assignment problem can be viewed as a generalized graph coloring problem, and these algorithms have been developed, in part, by suitably adapting some of the ideas previously introduced in heuristic graph coloring algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.