Abstract-This paper presents off design performance evaluation and calculation methodology of a surface type condenser. Best condenser pressure which can be achieved in actual off design conditions has been evaluated by real time parameters. Condenser performance study has been carried out for cooling water flow, cooling water inlet temperature, and for air ingress/dirty tubes. This method can be proved useful in the case where no curve regarding variation of condenser back pressure verses cooling water inlet temperature is available. All data for performance has been collected and evaluated from a 525MW operating unit of Bharat Heavy Electricals Limited.Keyword -Surface Condenser; Heat Transfer; Steam Condenser; Heat Load; Condenser performance; Power Plant I. INTRODUCTION This paper is based on performance analysis of condenser in a 525MW thermal power plant. A thermal power plant consists of five major components -(1) boiler, (2) steam turbines -high pressure turbine, intermediate pressure turbine and low pressure turbine, (3) condenser, (4) feed water pumps -condensate extraction pumps and boiler feed pumps, (5) feed water heaters -one feed water heater (steam bled from high pressure turbine exhaust), one feed water heater (steam bled from intermediate pressure turbine) and three feed water heater for which steam is bled from low pressure turbine [1]. In boiler, constant pressure heating of feed water takes place in economizer, evaporator and in superheater. Superheated steam then goes to high pressure turbine, expands to produce work. Some part of steam is extracted here for feed water heating process. Steam then is reheated to high temperature and enters in intermediate pressure turbine. Some steam is again bled for regeneration process. Steam then enters in low pressure turbine where again some portion of steam is extracted for feed water heating process. After passing through the low pressure turbine, steam goes to condenser where this steam converts into saturated water. Low pressure feed water pumps (condensate extraction pumps) pump condensate water to the low pressure heaters where this condensate water gets some heat from extracted steam. After low pressure heaters, condensate water goes to Deaerator and then with the help of high pressure feed water pumps (boiler feed pumps) feed water enters the boiler via high pressure heaters. And this way whole cycle repeats itself. Condenser is an essential component in thermal power plant. It is a type of heat exchanger in which steam undergoes phase change by giving latent heat and converts into water. In turn coolant water gains sensible heat. As specific volume of steam is more than that of specific volume of condensed water. A vacuum (negative pressure) develops in shell side of condenser which extracts more steam from low pressure turbine exhaust and thus creates a self suction natural phenomenon. Condenser reduces the turbine exhaust pressure so as to increase the specific output of turbine. Vikram Haldkar, Abhay kumar sharma, R.K Ranjan, and V.K Bajpai...
Abstract-In this paper, analysis has been done to determine how much optimum steam pressure should be maintained before control valves at part loads so that throttling losses would be minimum. Comparison has been made between existing values maintained at present and calculated values from proposed method. Results have shown that approximately 8 ksc of pressure can be saved and process can be improved by adopting this method. This method can be proved useful to generate main steam pressure verses load curve. All data for analysis has been collected and evaluated from a 525MW operating unit of Bharat Heavy Electricals Limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.