This paper studies the zero-delay source-channel coding problem, and specifically the problem of obtaining the vector transformations that optimally map between the m-dimensional source space and k-dimensional channel space, under a given transmission power constraint and for the mean square error distortion. The functional properties of the cost are studied and the necessary conditions for the optimality of the encoder and decoder mappings are derived. An optimization algorithm that imposes these conditions iteratively, in conjunction with the noisy channel relaxation method to mitigate poor local minima, is proposed. The numerical results show strict improvement over prior methods. The numerical approach is extended to the scenario of source-channel coding with decoder side information. The resulting encoding mappings are shown to be continuous relatives of, and in fact subsume as special case, the Wyner-Ziv mappings encountered in digital distributed source coding systems. A well-known result in information theory pertains to the linearity of optimal encoding and decoding mappings in the scalar Gaussian source and channel setting, at all channel signal-to-noise ratios (CSNRs). In this paper, the linearity of optimal coding, beyond the Gaussian source and channel, is considered and the necessary and sufficient condition for linearity of optimal mappings, given a noise (or source) distribution, and a specified a total power constraint are derived. It is shown that the Gaussian source-channel pair is unique in the sense that it is the only source-channel pair for which the optimal mappings are linear at more than one CSNR values. Moreover, the asymptotic linearity of optimal mappings is shown for low CSNR if the channel is Gaussian regardless of the source and, at the other extreme, for high CSNR if the source is Gaussian, regardless of the channel. The extension to the vector settings is also considered where besides the conditions inherited from the scalar case, additional constraints must be satisfied to ensure linearity of the optimal mappings.
The two most prevalent notions of common information (CI) are due to Wyner and Gács-Körner and both the notions can be stated as two different characteristic points in the lossless Gray-Wyner region. Although the information theoretic characterizations for these two CI quantities can be easily evaluated for random variables with infinite entropy (eg., continuous random variables), their operational significance is applicable only to the lossless framework. The primary objective of this paper is to generalize these two CI notions to the lossy Gray-Wyner network, which hence extends the theoretical foundation to general sources and distortion measures. We begin by deriving a single letter characterization for the lossy generalization of Wyner's CI, defined as the minimum rate on the shared branch of the Gray-Wyner network, maintaining minimum sum transmit rate when the two decoders reconstruct the sources subject to individual distortion constraints. To demonstrate its use, we compute the CI of bivariate Gaussian random variables for the entire regime of distortions. We then similarly generalize Gács and Körner's definition to the lossy framework. The latter half of the paper focuses on studying the tradeoff between the total transmit rate and receive rate in the Gray-Wyner network. We show that this tradeoff yields a contour of points on the surface of the Gray-Wyner region, which passes through both the Wyner and Gács-Körner operating points, and thereby provides a unified framework to understand the different notions of CI. We further show that this tradeoff generalizes the two notions of CI to the excess sum transmit rate and receive rate regimes, respectively.
Abstract-This paper presents a new achievable rate-distortion region for the L-channel multiple descriptions problem. Currently, the most popular region for this problem is due to Venkataramani, Kramer and Goyal [3]. Their encoding scheme is an extension of the Zhang-Berger scheme to the L-channel case and includes a combinatorial number of refinement codebooks, one for each subset of the descriptions. All the descriptions also share a single common codeword, which introduces redundancy, but assists in better coordination of the descriptions. This paper proposes a novel encoding technique involving 'Combinatorial Message Sharing', where every subset of the descriptions may share a distinct common message. This introduces a combinatorial number of shared codebooks along with the refinement codebooks of [3]. These shared codebooks provide a more flexible framework to trade off redundancy across the messages for resilience to descriptions loss. We derive an achievable ratedistortion region for the proposed technique, and show that it subsumes the achievable region of [3].
Abstract-In this paper, we consider the problem of minimum cost joint compression and routing for networks with multiplesinks and correlated sources. We introduce a routing paradigm, called dispersive information routing, wherein the intermediate nodes are allowed to forward a subset of the received bits on subsequent paths. This paradigm opens up a rich class of research problems which focus on the interplay between encoding and routing in a network. What makes it particularly interesting is the challenge in encoding sources such that, exactly the required information is routed to each sink, to reconstruct the sources they are interested in. We demonstrate using simple examples that our approach offers better asymptotic performance than conventional routing techniques. We also introduce a variant of the well known random binning technique, called 'power binning', to encode and decode sources that are dispersively transmitted, and which asymptotically achieves the minimum communication cost within this routing paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.