Compounds that inhibit signalling upstream of ERK (extracellular-signal-regulated kinase) are promising anticancer therapies, motivating research to define how this pathway promotes cancers. In the present study, we show that human capicúa represses mRNA expression for PEA3 (polyoma enhancer activator 3) Ets transcription factors ETV1, ETV4 and ETV5 (ETV is Ets translocation variant), and this repression is relieved by multisite controls of capicúa by ERK, p90RSK (p90 ribosomal S6 kinase) and 14-3-3 proteins. Specifically, 14-3-3 binds to p90RSK-phosphorylated Ser173 of capicúa thereby modulating DNA binding to its HMG (high-mobility group) box, whereas ERK phosphorylations prevent binding of a C-terminal NLS (nuclear localization sequence) to importin α4 (KPNA3). ETV1, ETV4 and ETV5 mRNA levels in melanoma cells are elevated by siRNA (small interfering RNA) knockdown of capicúa, and decreased by inhibiting ERK and/or expressing a form of capicúa that cannot bind to 14-3-3 proteins. Capicúa knockdown also enhances cell migration. The findings of the present study give further mechanistic insights into why ETV1 is highly expressed in certain cancers, indicate that loss of capicúa can desensitize cells to the effects of ERK pathway inhibitors, and highlight interconnections among growth factor signalling, spinocerebellar ataxias and cancers.
Insulin receptor substrate 1 (IRS1) and IRS2 are well-characterized adapter proteins that relay signals from receptor tyrosine kinases to downstream components of signalling pathways. In contrast, the function of IRS4 is not well understood. IRS4 overexpression has been associated with acute lymphoblastic leukaemia and subungual exostosis, while point mutations of IRS4 have been found in melanomas. Here, we show that while IRS4 expression is low in most cancer cell lines, IRS4 mRNA and protein levels are markedly elevated in certain cells including the NCI-H720, DMS114, HEK293T and HEK293AAV lines. Surprisingly, IRS4 expression was also strongly induced when HEK293 cells were infected with retroviral particles and selected under puromycin, making IRS4 expression a potential off-target effect of retroviral expression vectors. Cells with high expression of IRS4 displayed high phosphatidylinositol (3,4,5)-trisphosphate (PIP3) levels, as well as elevated Akt and p70 S6 kinase activities, even in the absence of growth factors. PI 3-kinase (PI3K) signalling in these cells depends on IRS4, even though these cells also express IRS1/2. Knockdown of IRS4 also inhibited cell proliferation in cells with high levels of IRS4. Together, these findings suggest IRS4 as a potential therapeutic target for cancers with high expression of this protein.
The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1.DOI: http://dx.doi.org/10.7554/eLife.12278.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.