<span lang="EN-US">Online Social Networks (OSNs) is currently popular interactive media to establish the communication, share and disseminate a considerable amount of human life data. Daily and continuous communications imply the exchange of several types of content, including free text, image, audio, and video data. Security is one of the friction points that emerge when communications get mediated in Online Social Networks (OSNs). However, there are no content-based preferences supported, and therefore it is not possible to prevent undesired messages. Providing the service is not only a matter of using previously defined web content mining and security techniques. To overcome the issues, Level-level Security Optimization & Content Visualization Algorithm is proposed to avoid the privacy issues during content sharing and data visualization. It adopts level by level privacy based on user requirement in the social network. It evaluates the privacy compatibility in the online social network environment to avoid security complexities. The mechanism divided into three parts namely like online social network platform creation, social network privacy, social network within organizational privacy and network controlling and authentication. Based on the experimental evaluation, a proposed method improves the privacy retrieval accuracy (PRA) 9.13% and reduces content retrieval time (CRT) 7 milliseconds and information loss (IL) 5.33%.</span>
Abstract:Preservation of privacy is a significant aspect of data mining and as the secrecy of sensitive information must be maintained while sharing the data among different untrusted parties. There are many application is suffering from vulnerable, data leakage, data misuse, and sensitive data disclosure issues. To protect the privacy of sensitive data without losing the usability of data, various techniques have been used in privacy-preserving data mining (PPDM). Some of the approaches are available to maintain the tight privacy, but they fail to minimize the execution time and error rate. The main objective of the article is to contribute and retrieve the data with minimal classification error and execution time with enhanced privacy. To overcome the issues, the paper introduces the Secure Data Contribution Retrieval algorithm (SDCRA) to fulfill the current issues. Proposed algorithms define a privacy policy and arrange the security based on requirements. This design applies the privacy based on the compatibility of applications. This approach is capable of satisfying the accuracy constraints for multiple datasets. It also considers the efficient data extraction with a good ranking of attributes in tables. Here, proposed SDCRA is compared with existing approaches namely as Perturbation, singular value decomposition (SVD), Singular Value Decomposition data Perturbation (SVD+DP), K-anonymity with Decision Tree (KA+DT)[] for Cancer, HIV, Diabetes dataset. Based on experimental result proposed approach performs well regarding success rate, error rate and system execution time compare than existing methods. Proposed approach improves Success Rate 1.83% reduces the Error Rate 2.33% and minimizes the system execution time 2 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.