Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships to patient survival. Using gene expression signatures, we devised an in silico strategy to map patterns of oncogenic pathway activation in 301 primary gastric cancers, the second highest cause of global cancer mortality. We identified three oncogenic pathways (proliferation/stem cell, NF-κB, and Wnt/β-catenin) deregulated in the majority (>70%) of gastric cancers. We functionally validated these pathway predictions in a panel of gastric cancer cell lines. Patient stratification by oncogenic pathway combinations showed reproducible and significant survival differences in multiple cohorts, suggesting that pathway interactions may play an important role in influencing disease behavior. Individual GCs can be successfully taxonomized by oncogenic pathway activity into biologically and clinically relevant subgroups. Predicting pathway activity by expression signatures thus permits the study of multiple cancer-related pathways interacting simultaneously in primary cancers, at a scale not currently achievable by other platforms.
Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270) compared to nonmalignant tissues (n = 71). Comprising genes linked to multiple cancer-related pathways, the restricted expression of this “Poised Gene Cassette” (PGC) was robustly validated across 11 independent cohorts of ∼1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP), which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.
Recurrent genomic amplifications and deletions are frequently observed in primary gastric cancers (GC). However, identifying specific oncogenes and tumor suppressor genes within these regions can be challenging, as they often cover tens to hundreds of genes. Here, we combined high-resolution array-based comparative genomic hybridization (aCGH) with gene expression profiling to target genes within focal high-level amplifications in GC cell lines, and identified RAB23 as an amplified and overexpressed Chr 6p11p12 gene in Hs746T cells. High RAB23 protein expression was also observed in some lines lacking RAB23 amplification, suggesting additional mechanisms for up-regulating RAB23 besides gene amplification. siRNA silencing of RAB23 significantly reduced cellular invasion and migration in Hs746T cells, whereas overexpression of RAB23 enhanced cellular invasion in AGS cells. RAB23 amplifications in primary gastric tumors were confirmed by both fluorescence in situ hybridization and genomic qPCR, and in two independent patient cohorts from Hong Kong and the United Kingdom RAB23 expression was significantly associated with diffuse-type GC (dGC) compared with intestinal-type GC (iGC). These results provide further evidence that dGC and iGC likely represent two molecularly distinct tumor types, and show that investigating focal chromosomal amplifications by combining highresolution aCGH with expression profiling is a powerful strategy for identifying novel cancer genes in regions of recurrent chromosomal aberration. [Cancer Res 2008;68(12): 4623-30]
Elevated expression of the PLA2G2A phospholipase in gastric cancer (GC) is associated with improved patient survival. To elucidate function and regulation of PLA2G2A in GC, we analyzed a panel of GC cell lines. PLA2G2A was specifically expressed in lines with constitutive Wnt activity, implicating B-catenin-dependent Wnt signaling as a major upstream regulator of PLA2G2A expression. The invasive ability of PLA2G2A-expressing AGS cells was enhanced by PLA2G2A silencing, whereas cellular migration in non-PLA2G2A -expressing N87 cells was inhibited by enforced PLA2G2A expression, indicating that PLA2G2A is both necessary and sufficient to function as an inhibitor of GC invasion in vitro. We provide evidence that antiinvasive effect of PLA2G2A occurs, at least in part, through its ability to inhibit the S100A4 metastasis mediator gene. Consistent with its invasion inhibitor role, PLA2G2A expression was elevated in primary gastric, colon, and prostrate early-stage tumors, but was decreased in metastatic and late-stage tumors. There was a strong association between PLA2G2A promoter methylation status and PLA2G2A expression, suggesting that the loss of PLA2G2A expression in late-stage cancers may be due to epigenetic silencing. Supporting this, among the non-PLA2G2A-expressing lines, pharmacologic inhibition of epigenetic silencing reactivated PLA2G2A in Wnt-active lines, but in non-Wnt-active lines, a combination of Wnt hyperactivation and inhibition of epigenetic silencing were both required for PLA2G2A reactivation. Our results highlight the complexity of PLA2G2A regulation and provide functional evidence for PLA2G2A as an important regulator of invasion and metastasis in GC.
Oral Tongue Squamous cell carcinoma (OTSCC), the most frequently affected oral cancer sub-site, is associated with a poor therapeutic outcome and survival despite aggressive multi- modality management. Till date, there are no established biomarkers to indicate prognosis and outcome in patients presenting with tongue cancer. There is an urgent need for reliable molecular prognostic factors to enable identification of patients with high risk of recurrence and treatment failure in OTSCC management. In the current study, we present the meta-analysis of OTSCC microarray based gene expression profiles, deriving a comprehensive molecular portrait of tongue cancer biology, showing the relevant genes and pathways which can be pursued further to derive novel, tailored therapeutics as well as for prognostication. We have studied 5 gene expression profiling data sets available on exclusively oral tongue subsite comprising of sample size; n = 190, consisting of 111 tumors and 79 normals. The meta- analysis results showed 2405 genes differentially regulated comparing OTSCC tumor and normal. The top up regulated genes were found to be involved in Extracellular matrix degradation (ECM) and Epithelial to mesenchymal transition (EMT) pathways. The top down regulated genes were found to be involved in detoxication pathways. We validated the results in clinical samples (n = 206), comprising of histologically normals (n = 10), prospective (n = 29) and retrospective (n = 167) OTSCC by evaluating MMP9 and E-cadherin gene expression by qPCR and immunohistochemistry. Consistent with meta-analysis results, MMP9 mRNA expression was significantly up regulated in OTSCC primary tumors compared to normals. MMP9 protein over expression was found to be a significant predictor of poor prognosis, disease recurrence and poor Disease Free Survival (DFS) in OTSCC patients. Analysis by univariate and multivariate Cox proportional hazard model showed patients with loss of E-cadherin expression in OTSCC tumors having a poorer DFS (HR = 1.566; P value = 0.045) and poorer Overall Survival (OS) (HR = 1.224; P value = 0.003) respectively. Combined over-expression of MMP9 and loss of E-cadherin membrane positivity in the invasive tumor front (ITF) of OTSCC had a significant association with poorer DFS (Log Rank = 16.040; P value = 0.001). These results suggest that along with known clinical indicators of prognosis like occult node positivity, assessment of MMP9 and E-cadherin expression at ITF can be useful to identify patients at high risk and requiring a more intensive treatment strategy for OTSCC. Meta-analysis study of gene expression profiles indicates that OTSCC is a disease of ECM degradation leading to activated EMT processes implying the aggressive nature of the disease. The triggers for these processes should be studied further. Newer clinical application with agents that can inhibit the mediators of ECM degradation may be a key to achieving clinical control of invasion and metastasis of OTSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.