A condition for a statistical manifold to have an equiaffine structure is studied. The facts that dual flatness and conjugate symmetry of a statistical manifold are sufficient conditions for a statistical manifold to have an equiaffine structure were obtained in [2] and [3]. In this paper, a fact that a statistical manifold, which is conjugate Ricci-symmetric, has an equiaffine structure is given, where conjugate Ricci-symmetry is weaker condition than conjugate symmetry. A condition for conjugate symmetry and conjugate Ricci-symmetry to coincide is also given.
We introduce a quarter-symmetric projective conformal non-metric connection
family and study its geometrical properties. Further we investigate the
geometries of a symmetric-type quarter-symmetric projective conformal
non-metric connection satisfying the Schur?s theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.