Steroidogenic acute regulatory protein (StAR) plays a key role in steroid hormone synthesis by enhancing the metabolism of cholesterol into pregnenolone. We determined the organization of the StAR structural gene, mapped to 8p11.2. The gene spans 8 kb and consists of seven exons interrupted by six introns. The 1.3 kb of DNA upstream from the transcription start site directed expression of a luciferase reporter gene in mouse Y-1 adrenal cortical tumor cells but not in BeWo choriocarcinoma cells. Reporter gene expression in the Y-1 cells was increased more than 2-fold by 8-Br-cAMP, indicating that the 1.3 kb DNA fragment contains sequences that confer tissue-specific expression and cAMP regulation. The sequence of a related StAR pseudogene, mapped to chromosome 13, lacks introns and has an insertion, numerous substitutions, and deletions. Expression of StAR in COS-1 cells cotransfected with cholesterol 27-hydroxylase (P450c27) and adrenodoxin resulted in a 6-fold increase in formation of 3 beta-hydroxy-5-cholestenoic acid, demonstrating that StAR's actions are not specific to steroidogenesis but extend to other mitochondrial cholesterol-metabolizing enzymes.
Oxysterols exert a major influence over cellular cholesterol homeostasis. We examined the effects of oxysterols on the expression of steroidogenic acute regulatory protein (StAR), which increases the delivery of cholesterol to sterol-metabolizing P450s in the mitochondria. 22(R)-hydroxycholesterol (22(R)-OHC), 25-OHC, and 27-OHC each increased steroidogenic factor-1 (SF-1)-mediated StAR gene transactivation by ϳ2-fold in CV-1 cells. In contrast, cholesterol, progesterone, and the 27-OHC metabolites, 27-OHC-5-3-one and 7␣,27-OHC, had no effect. Unlike our findings in CV-1 cells, SF-1-dependent StAR promoter activity was not augmented by 27-OHC in COS-1 cells, Y-1 cells, BeWo choriocarcinoma cells, Chinese hamster ovary (CHO) cells, and human granulosa cells. Studies examining the metabolism of 27-OHC indicated that CV-1 cells formed a single polar metabolite, 3-OH-5-cholestenoic acid from radiolabeled 27-OHC. However, this metabolite inhibited StAR promoter activity in CV-1, COS-1 and CHO cells. Because 7␣,27-OHC was unable to increase SF-1-dependent StAR promoter activity, we examined 27-OHC 7␣-hydroxylase in COS-1 and CHO cells. COS-1 cells contained high 7␣-hydroxylase activity, whereas the enzyme was undetectable in CHO cells. The hypothesis that oxysterols act in CV-1 cells to increase StAR promoter activity by reducing nuclear levels of sterol regulatory element binding protein was tested. This notion was refuted when it was discovered that sterol regulatory element binding protein-1a is a potent activator of the StAR promoter in CV-1, COS-1, and human granulosa cells. Human granulosa and theca cells, which express endogenous SF-1, contained more than 5-fold more StAR protein following addition of 27-OHC, whereas StAR mRNA levels remained unchanged. We conclude that 1) there are cell-specific effects of oxysterols on SF-1-dependent transactivation; 2) the ability to increase transactivation is limited to certain oxysterols; 3) there are cell-specific pathways of oxysterol metabolism; and 4) oxysterols elevate StAR protein levels through posttranscriptional actions.
Oxysterol 7 ␣ -hydroxylase has broad substrate specificity for sterol metabolites and may be involved in many metabolic processes including bile acid synthesis and neurosteroid metabolism. The cloned human oxysterol 7 ␣hydroxylase (CYP7B1) cDNA encodes a polypeptide of 506 amino acid residues that shares 40% sequence identity to human cholesterol 7 ␣ -hydroxylase (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids in the liver. In contrast to the liver-specific expression of CYP7A1, CYP7B1 mRNA transcripts were detected in human tissues involved in steroid genesis (brain, testes, ovary, and prostate) and in bile acid synthesis (liver) and reabsorption (colon, kidney, and small intestine). The human oxysterol 7 ␣ -hydroxylase transiently expressed in 293/T cells was able to catalyze 7 ␣ -hydroxylation of 27-hydroxycholesterol and dehydroepiandrosterone (DHEA). The human CYP7A1 and CYP7B1 both contain six exons and five introns. However, CYP7B1 spans at least 65 kb of the genome and is about 6-fold longer than CYP7A1. The transcription start site ( ؉ 1) was localized 204 bp upstream of the initiation codon. No TATA box-like sequence was found near the transcription start site. Transient transfection assays of CYP7B1 promoter/luciferase reporter constructs in HepG2 cells revealed that the promoter was highly active. The 5 upstream region from nt Ϫ 83 to ؉ 189 is the core promoter of the gene. -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.