Visceral left-right asymmetry occurs in all vertebrates, but the inversion of embryo turning (inv) mouse, which resulted following a random transgene insertion, is the only model in which these asymmetries are consistently reversed. We report positional cloning of the gene underlying this recessive phenotype. Although transgene insertion was accompanied by neighbouring deletion and duplication events, our YAC phenotype rescue studies indicate that the mutant phenotype results from the deletion. After extensively characterizing the 47-kb deleted region and flanking sequences from the wild-type mouse genome, we found evidence for only one gene sequence in the deleted region. We determined the full-length 5.5-kb cDNA sequence and identified 16 exons, of which exons 3-11 were eliminated by the deletion, causing a frameshift. The novel gene specifies a 1062-aa product with tandem ankyrin-like repeat sequences. Characterization of complementing and non-complementing YAC transgenic families revealed that correction of the inv mutant phenotype was concordant with integration and intact expression of this novel gene, which we have named inversin (Invs).
We report the cloning and functional expression of a novel K + channel ~-subunit from human atrium, hKv~13, hKv/33 is highly homologous to the two D-subunits cloned from rat brain, Kv/]l and Kv~2, but has an essentially unique stretch of 79 N-terminal residues. Upon expression in Xenopus oocytes, hKvi~3 accelerates the inactivation of co-injected hKvl.4 currents and induces fast inactivation of non-inactivating co-injected hKvl.5 currents. By contrast, hKvi~13 had no effect on hKvl.1, hKvl.2, or hKv2.1 currents. Thus, hKv/]3 represents a third type of K ÷ channel ~-subunit which modulates the kinetics of a unique subset of channels in the Kv| subfamily.
The cardiac inward rectifier current (IK1) contributes to the shape and duration of the cardiac action potential and helps to set the resting membrane potential. Although several inwardly rectifying K+ channels (IRKs) from different tissues have been cloned recently, the nature and number of K+ channels contributing to the cardiac IK1 are presently unknown. To address this issue in human heart, we have used the reverse-transcriptase-polymerase chain reaction (PCR) technique with human atrial total RNA as a template to identify two sequences expressed in heart that are homologous to previously cloned IRKs. One of the PCR products we obtained was virtually identical to IRK1 (cloned from a mouse macrophage cell line); the other, which we named hIRK, exhibited < 70% identity to IRK1. A full-length clone encoding hIRK was isolated from a human atrial cDNA library and functionally expressed in Xenopus oocytes. This channel, like IRK1, exhibited strong inward rectification and was blocked by divalent cations. However, hIRK differed from IRK1 at the single-channel level: hIRK had a single-channel conductance of 36 pS compared with 21 pS for IRK1. We have identified single channels of 41, 35, 21, and 9 pS in recordings from dispersed human atrial myocytes. However, none of these atrial inward rectifiers exhibited single-channel properties exactly like those of cloned hIRK expressed in oocytes. Our findings suggest that the cardiac IK1 in human atrial myocytes is composed of multiple inwardly rectifying channels distinguishable on the basis of single-channel conductance, each of which may be the product of a different gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.