We synthesized 20 years of research to explain the interrelated processes that determine soil and plant responses to biochar. The properties of biochar and its effects within agricultural ecosystems largely depend on feedstock and pyrolysis conditions. We describe three stages of reactions of biochar in soil: dissolution (1–3 weeks); reactive surface development (1–6 months); and aging (beyond 6 months). As biochar ages, it is incorporated into soil aggregates, protecting the biochar carbon and promoting the stabilization of rhizodeposits and microbial products. Biochar carbon persists in soil for hundreds to thousands of years. By increasing pH, porosity, and water availability, biochars can create favorable conditions for root development and microbial functions. Biochars can catalyze biotic and abiotic reactions, particularly in the rhizosphere, that increase nutrient supply and uptake by plants, reduce phytotoxins, stimulate plant development, and increase resilience to disease and environmental stressors. Meta‐analyses found that, on average, biochars increase P availability by a factor of 4.6; decrease plant tissue concentration of heavy metals by 17%–39%; build soil organic carbon through negative priming by 3.8% (range −21% to +20%); and reduce non‐CO2 greenhouse gas emissions from soil by 12%–50%. Meta‐analyses show average crop yield increases of 10%–42% with biochar addition, with greatest increases in low‐nutrient P‐sorbing acidic soils (common in the tropics), and in sandy soils in drylands due to increase in nutrient retention and water holding capacity. Studies report a wide range of plant responses to biochars due to the diversity of biochars and contexts in which biochars have been applied. Crop yields increase strongly if site‐specific soil constraints and nutrient and water limitations are mitigated by appropriate biochar formulations. Biochars can be tailored to address site constraints through feedstock selection, by modifying pyrolysis conditions, through pre‐ or post‐production treatments, or co‐application with organic or mineral fertilizers. We demonstrate how, when used wisely, biochar mitigates climate change and supports food security and the circular economy.
Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance. Studying the response of soil microbial communities to biochar amendments is important for better understanding interactions of biochar with soil, as well as plants. However, the effect of biochar on soil microorganisms has received less attention than its influences on soil physicochemical properties. In this review, the following key questions are discussed: (i) how does biochar affect soil microbial activities, in particular soil carbon (C) mineralization, nutrient cycling, and enzyme activities? (ii) how do microorganisms respond to biochar amendment in contaminated soils? and (iii) what is the role of biochar as a growth promoter for soil microorganisms? Many studies have demonstrated that biochar-soil application enhances the soil microbial biomass with substantial changes in microbial community composition. Biochar amendment changes microbial habitats, directly or indirectly affects microbial metabolic activities, and modifies the soil microbial community in terms of their diversity and abundance. However, chemical properties of biochar, (especially pH and nutrient content), and physical properties such as pore size, pore volume, and specific surface area play significant roles in determining the efficacy of biochar on microbial performance as biochar provides suitable habitats for microorganisms. The mode of action of biochar leading to stimulation of microbial activities is complex and is influenced by the nature of biochar as well as soil conditions.
Biochar, an environmentally friendly soil conditioner, is produced using several thermochemical processes. It has unique characteristics like high surface area, porosity, and surface charges. This paper reviews the fertilizer value of biochar, and its effects on soil properties, and nutrient use efficiency of crops. Biochar serves as an important source of plant nutrients, especially nitrogen in biochar produced from manures and wastes at low temperature (≤ 400 °C). The phosphorus, potassium, and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars. The nutrient contents and pH of biochar are positively correlated with pyrolysis temperature, except for nitrogen content. Biochar improves the nutrient retention capacity of soil, which depends on porosity and surface charge of biochar. Biochar increases nitrogen retention in soil by reducing leaching and gaseous loss, and also increases phosphorus availability by decreasing the leaching process in soil. However, for potassium and other nutrients, biochar shows inconsistent (positive and negative) impacts on soil. After addition of biochar, porosity, aggregate stability, and amount of water held in soil increase and bulk density decreases. Mostly, biochar increases soil pH and, thus, influences nutrient availability for plants. Biochar also alters soil biological properties by increasing microbial populations, enzyme activity, soil respiration, and microbial biomass. Finally, nutrient use efficiency and nutrient uptake improve with the application of biochar to soil. Thus, biochar can be a potential nutrient reservoir for plants and a good amendment to improve soil properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.