The effect of exogenous melatonin on chilling injury in peach fruit after harvest was investigated. To explore the optimum concentration of melatonin for chilling tolerance induction, peach fruit were treated with 50, 100, or 200 μM melatonin for 120 min and then stored for 28 days at 4 °C. The results showed that application of melatonin at 100 μM was most effective in reducing chilling injury of peach fruit after harvest. Peaches treated with melatonin at this concentration displayed higher levels of extractable juice rate and total soluble solids than the non-treated peaches. In addition, melatonin treatment enhanced expression of PpADC, PpODC, and PpGAD and consequently increased polyamines and γ-aminobutyric acid (GABA) contents. Meanwhile, the upregulated transcripts of PpADC and PpODC and inhibited PpPDH expression resulted in the higher proline content in melatonin-treated fruit compared to the control fruit. Our results revealed that melatonin treatment may be a useful technique to alleviate chilling injury in cold-stored peach fruit. The chilling tolerance of harvested peaches induced by melatonin treatment is associated with higher levels of polyamine, GABA, and proline. These data provided here are the first protective evidence of exogenous melatonin in harvested horticultural products in response to direct chilling stress.
Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and NaCO-soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and NaCO-soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.
A new superhydrophobic nanofiber membrane with certain mechanical strength was prepared by electrospinning the polystyrene (PS) with ester modified silicone oil (EMSO). To increase the roughness and tensile strength, the EMSO with low energy as hydrophobic macromolecular substance was added into PS precursor solution. Then during the process of electrospinning, some of the ester modified silicone oil was distribution on the surface of substrate (PS) fiber films to generate double structure which leaded to the superhydrophobicity. We probed into the relationship between the surface wettability, morphologies, mechanical property, and the mass ratios of ester modified silicone oil /PS, and with the increasing of EMSO, the water CA value increased from 135 6 0.5 to 152 6 0.2 and the tensile strength grown from 0.23 MPa to 0.92 MPa. The film shows a network structure consisting of numerous randomly oriented fibers, the diameters of which changed from 0.5 lm to 2.0 lm belong to relatively big diameter fibers, which has great significance to the research of superhydrophobic membrane with big diameter fibers and also this method is easy, convenient and environment friendly.
Thermophoresis of charged spheroids has been widely applied in biology and medical science. In this work, we report an analysis of the anisotropic thermophoresis of diluted spheroidal colloids in aqueous media for extremely thin EDL cases. Under the boundary layer approximation, we formulate the thermophoretic velocity, the thermophoretic force, and the thermodiffusion coefficient of a randomly dispersed spheroid. The parametric studies show that under the aforementioned conditions, the thermophoresis is anisotropic and its thermodiffusion coefficient should be considered as a vector, DT. The thermodiffusion coefficient values and directions of DT are strongly related to the aspect ratio and the angle θ between the externally applied temperature gradient and the particle's axis of revolution: The increasing aspect ratio enlarges the thermodiffusion coefficient value DT of prolate (oblate) spheroids to a constant value when θ < 60° (θ > 45°), and it reduces DT of prolate (oblate) spheroids to a constant value when θ > 60° (θ < 45°). The thermodiffusion coefficient direction of both prolate and oblate spheroids deviates slightly from −∇T∞ for a small aspect ratio, and such deviation becomes serious for a large aspect ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.