The focus of this study was to investigate the effects of surface charge and surface hydrophobicity on anodic biofilm formation, biofilm community composition, and current generation in bioelectrochemical systems (BESs). Glassy carbon surfaces were modified with -OH, -CH3, -SO3(-), or -N(+)(CH3)3 functional groups by electrochemical reduction of aryl diazonium salts and then used as anodes with poised potential of -0.2 V (vs Ag/AgCl). The average startup times and final current densities for the -N(+)(CH3)3, -OH, -SO3(-), and -CH3, electrodes were (23 d, 0.204 mA/cm(2)), (25.4 d, 0.149 mA/cm(2)), (25.9 d, 0.114 mA/cm(2)), and (37.2 d, 0.048 mA/cm(2)), respectively. Biofilms on different surfaces were analyzed by nonturnover cyclic voltammetry (CV), fluorescence in situ hybridization (FISH), and 16S rRNA gene amplicon pyrosequencing. The results demonstrated that 1) differences in the maximum current output between surface modifications was correlated with biomass quantity, and 2) all biofilms were dominated by Geobacter populations, but the composition of -CH3-associated biofilms differed from those formed on surfaces with different chemical modification. This study shows that anode surface charge and hydrophobicity influences biofilm development and can lead to significant differences in BESs performance. Positively charged and hydrophilic surfaces were more selective to electroactive microbes (e.g. Geobacter) and more conducive for electroactive biofilm formation.
The advent of renewable energy conversion systems exacerbates the existing issue of intermittent excess power. Microbial electrosynthesis can use this power to capture CO 2 and produce multicarbon compounds as a form of energy storage. As catalysts, microbial populations can be used, provided side reactions such as methanogenesis are avoided. Here a simple but effective approach is presented based on enrichment of a robust microbial community via several culture transfers with H 2 :CO 2 conditions. This culture produced acetate at a concentration of 1.29 ± 0.15 g L −1 (maximum up to 1.5 g L −1 ; 25 mM) from CO 2 at a fixed current of −5 Am −2 in fed-batch bioelectrochemical reactors at high N 2 :CO 2 flow rates. Continuous supply of reducing equivalents enabled acetate production at a rate of 19 ± 2 gm −2 d −1 (projected cathode area) in several independent experiments. This is a considerably high rate compared with other unmodified carbon-based cathodes. 58 ± 5% of the electrons was recovered in acetate, whereas 30 ± 10% of the electrons was recovered in H 2 as a secondary product. The bioproduction was most likely H 2 based; however, electrochemical, confocal microscopy, and community analyses of the cathodes suggested the possible involvement of the cathodic biofilm. Together, the enrichment approach and galvanostatic operation enabled instant start-up of the electrosynthesis process and reproducible acetate production profiles.
Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.