Branch and Bound (BnB) has been successfully used to solve many combinatorial optimization problems. However, BnB MaxSAT solvers perform poorly when solving real-world and academic optimization problems. They are only competitive for random and some crafted instances. Thus, it is a prevailing opinion in the community that BnB is not really useful for practical MaxSAT solving.
We refute this opinion by presenting a new BnB MaxSAT solver, called MaxCDCL, which combines clause learning and an efficient bounding procedure. MaxCDCL is among the top 5 out of a total of 15 exact solvers that participated in the 2020 MaxSAT Evaluation, solving several instances that other solvers cannot solve. Furthermore, MaxCDCL solves the highest number of instances from different MaxSAT Evaluations when combined with the best existing solvers.
As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.