Battery-free, wireless microfluidic/electronic system for multiparameter sweat analysis.
Existing vital sign monitoring systems in the neonatal intensive care unit (NICU) require multiple wires connected to rigid sensors with strongly adherent interfaces to the skin. We introduce a pair of ultrathin, soft, skin-like electronic devices whose coordinated, wireless operation reproduces the functionality of these traditional technologies but bypasses their intrinsic limitations. The enabling advances in engineering science include designs that support wireless, battery-free operation; real-time, in-sensor data analytics; time-synchronized, continuous data streaming; soft mechanics and gentle adhesive interfaces to the skin; and compatibility with visual inspection and with medical imaging techniques used in the NICU. Preliminary studies on neonates admitted to operating NICUs demonstrate performance comparable to the most advanced clinical-standard monitoring systems.
Standard of care management in neonatal and pediatric intensive care units (NICUs and PICUs) involve continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, include catheter-loaded pressure sensors that insert into the arteries. These protocols involve risks for complications and impediments to clinical care and skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to these management standards but also supports a range of important additional features (without limitations or shortcomings of existing approaches), supported by data from pilot clinical studies in the neonatal intensive care unit (NICU) and pediatric ICU (PICU). The combined capabilities of these platforms extend beyond clinical quality measurements of vital signs (heart rate, respiration rate, temperature and blood oxygenation) to include novel modalities for (1) tracking movements and changes in body orientation, (2) quantifying the physiological benefits of skin-to-skin care (e.g. Kangaroo care) for neonates, (3) capturing acoustic signatures of cardiac activity by directly measuring mechanical vibrations generated through the skin on the chest, (4) recording vocal biomarkers associated with tonality and temporal characteristics of crying impervious to confounding ambient noise, and (5) monitoring a reliable surrogate for systolic blood pressure. The results have potential to significantly enhance the quality of neonatal and pediatric critical care.In the United States, over 480,000 critically-ill infants and children enter intensive care units (ICUs) each year. Those less than one year of age suffer from the highest morbidity and mortality rates and therefore require the most intensive care 1,2 . These fragile patients include
Skin-mounted soft electronics incorporating high-bandwidth triaxial accelerometers can provide broad classes of physiologically relevant information, such as mechanoacoustic signatures of underlying body processes (such as those captured by a stethoscope) and precision kinematics of core body motions. Here, we describe a wireless device designed to be conformally placed on the suprasternal notch for the continuous measurement of mechanoacoustic signals, from subtle vibrations of the skin at accelerations of ~10 −3 m•s −2 to large motions of the entire body at ~10 m•s −2 , and at frequencies up to ~800 Hz. Because th measurements are a complex superposition of signals that arise from locomotion, body orientation, swallowing, respiration, cardiac activity, vocal-fold vibrations and other sources, we used frequency-domain analysis and machine learning to obtain, from human subjects during natural daily activities and exercise, real-time recordings of heart rate, respiration rate, energy intensity and other essential vital signs, as well as talking time and cadence, swallow counts and patterns, and other unconventional biomarkers. We also used the device in sleep laboratories, and validated the measurements via polysomnography. Natural processes of the human body yield a multitude of mechano-acoustic (MA) signals, many of which strongly attenuate at the skin-air interface 1-5. Motions with amplitudes and Lee et al.
Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.