The forced vibration of a sandwich beam integrating a shear thickening fluid (STF) core and with conductive skins subjected to a periodic excitation was investigated theoretically in this study. The rheological properties of the STF material including viscosity, plasticity, and elasticity may be changed under the periodic vibration, and hence they were considered. The governing equation of motion was derived based on the complex stiffness method and some key parameters were derived based on the Timoshenko beam theory. Effects of the excitation frequency, the excitation amplitude, the excitation location, and the skin/core thickness ratio on the nature frequency of the sandwich beam were investigated. It was found that the STF core has a significant effect on the dynamic property of the sandwich beam. Based on the findings, integrating the STF core in a sandwich beam can reduce the vibration of the beam.
Summary
In this study, a shear thickening fluid (STF) damper was experimented upon under different loading frequencies and amplitudes to investigate its nonlinear hysteretic behavior and energy dissipation capacity. An STF sample with 20% mass fraction and dispersion medium were prepared by nanoparticle silica (SiO2) and polyethylene glycol (PEG200). By using a parallel‐plate rheometer, steady‐state experiments were carried out to characterize the rheological properties of the sample. The results indicate that the STF sample shows an abrupt increase in viscosity/stress beyond a critical shear rate/strain. The results also show that the STF sample has good reversibility, thixotropy, and stability and can be used as a smart damping material in damper devices. Also, a prototype damper was developed and manufactured. Its nonlinear hysteretic behavior and energy dissipation capacity were experimentally investigated through the responses of damping force–displacement and damping force–velocity. The results show that the STF damper has excellent damping force as the loading condition increases and the controllability can be increased up to 3.21 times. The results also show that the energy dissipation capacity formed by damping force–displacement becomes fuller as the loading condition increases. Moreover, the results show that the graphical shapes of hysteretic loops of damping force–velocity can exhibit various styles as the STF's mechanism changes but the shapes are not stable when the velocity exceeds a certain value.
A new model for the free transverse vibration of axially functionally graded (FG) tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM) by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.