This paper studies the problem of joint power allocation and user association in wireless heterogeneous networks (HetNets) with a deep reinforcement learning (DRL)-based approach. This is a challenging problem since the action space is hybrid, consisting of continuous actions (power allocation) and discrete actions (device association). Instead of quantizing the continuous space (i.e., possible values of powers) into a set of discrete alternatives and applying traditional deep reinforcement approaches such as deep Q learning, we propose working on the hybrid space directly by using the novel parameterized deep Q-network (P-DQN) to update the learning policy and maximize the average cumulative reward. Furthermore, we incorporate the constraints of limited wireless backhaul capacity and the quality-of-service (QoS) of each user equipment (UE) into the learning process. Simulation results show that the proposed P-DQN outperforms the traditional approaches, such as the DQN and distance-based association, in terms of energy efficiency while satisfying the QoS and backhaul capacity constraints. The improvement in the energy efficiency of the proposed P-DQN on average may reach 77.6% and 140.6% over the traditional DQN and distance-based association approaches, respectively, in a HetNet with three SBS and five UEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.