SiC–TiC0.5N0.5 composites were fabricated from β‐SiC and TiN powders with 2 vol% equimolar Y2O3–Sc2O3 additives by conventional hot pressing. Thermal and mechanical properties of the SiC–TiC0.5N0.5 composites were investigated as a function of initial TiN content. Relative densities of ≥98.9% were achieved for all samples. The addition of a small amount of TiN increased thermal conductivity, flexural strength, and fracture toughness of SiC ceramics. However, further addition of TiN in excess of 10 and 20 vol% deteriorated both thermal conductivity and flexural strength of the composites, respectively. In contrast, the fracture toughness of the composites increased continuously from 4.2 to 6.2 MPa∙m1/2 with increasing initial TiN content from 0 to 35 vol%, due to crack deflection by TiC0.5N0.5. The maximum values of thermal conductivity and flexural strength were 224 W/m K for a 2 vol% TiC0.5N0.5 and 599 MPa for a 10 vol% TiC0.5N0.5 composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.